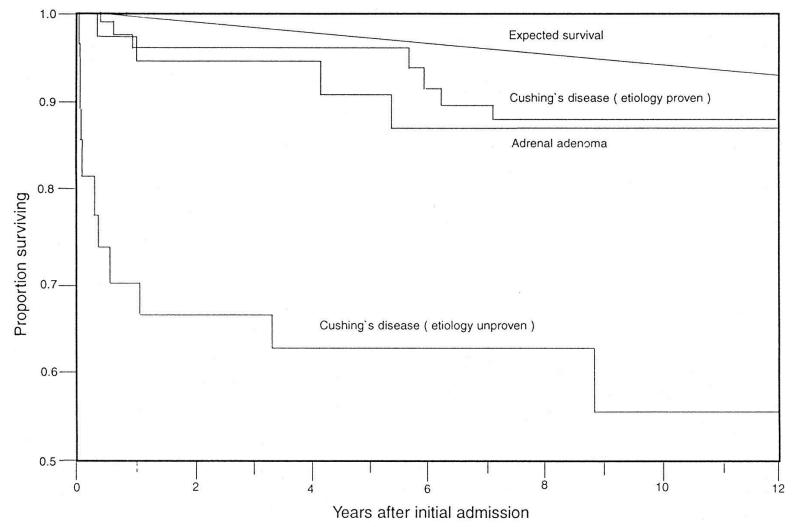
Altogether to Beat Cushing's Syndrome

giovedi 16 maggio 2013 | Certosa

INTRODUZIONE AL LAVORO DEI GRUPPI DI STUDIO

1. LE VARIE FORME DELLA SINDROME DI CUSHING

8.30-10.30	SESSIONE 1: IL CUSHING IPOFISARIO moderatori Franco Mantero, Francesco Minuto
8.30-9.00	IL TUMORE NON VISIBILE ED IL TUMORE AGGRESSIVO Emanuela Arvat
9:00-9:30	IL RUOLO DELLA MODERNA RISONANZA MAGNETIOA Fablo Tortora
9:30-10.00	IL RUOLO ATTUALE DEL OATETERISMO DEI SENI PETROSI Monica De Leo
10.00-10:30	discussione
10.30-11.00	pausa caffé
11.00-13.00	SESSIONE 2: IL CUSHING ECTOPICO moderatori Ettore Degli Uberti, Diego Ferone
11.00-11.30	L'INQUADRAMENTO OLINIOO-DIAGNOSTICO Giovanni Vitale
11.30-12.00	L'APPRODOIO TERAPEUTIDO Manuela Albertelli
12.00-12.80	IL RUOLO DEGLI ANALOGHI DELLA SOMATOSTATINA E DEL PASIREOTIDE Giorgio Arnaidi
12.30-13.00	discussione
13.00-14.30	pausa pranzo
14.30-16.30	SESSIONE 3: IL CUSHING SURRENALICO moderatori Massimo Mannelli, Salvatore Corsello
14.30-15.00	L'ADENOMA SURRENALIOO Alfredo Scillitani
15.00-15.30	IL OAROINOMA SURRENALIOO Massimo Terzolo
	L'IPERPLASIA BILATERALE DEL SURRENE Paola I. oli


16.00-16:30 discussione 16.30 -17.00 pausa caffé

Annual incidence per million of Cushing's disease and adrenal adenoma by age and sex (cases per yr)

		Cushing's	disease	Adrenal	adenoma	
Age (yr)	Pituitary etiology proven		Pituitary etiology unproven			
	M	F	M	F	M	F
0-19 $20-39$ $40-59$	0.5 [4] 0.9 [8] 1.0 [7]	0.6 [4] 2.2 [19] 3.1 [22]	0 [0] 0.2 [2] 0.1 [1]	0 [0] 0.4 [3] 1.7 [12]	0 [0] 0 [0] 0.6 [4]	0.1 [1] 2.6 [22] 1.1 [8]
≥60 Total	0.8 [4] 0.8 [23]	0.8 [5] 1.7 [50]	0 [0] 0.1 [3]	1.2 [8] 0.8 [23]	0 [0] 0.1 [4]	0.3 [2] 1.1 [33]

M, Men; F, women. The number of patients is in brackets.

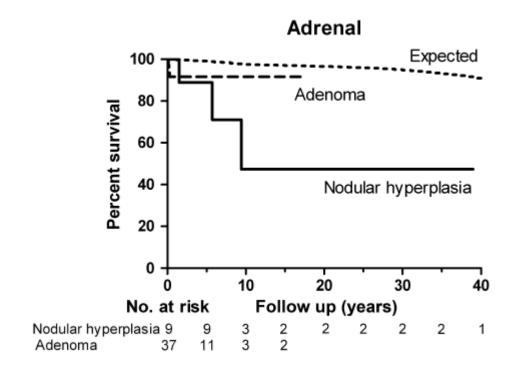
Survival in patients with Cushing's disease (proven and unproven) and with adrenocortical adenoma.

Lindholm J et al. JCEM 2001;86:117-123

Mortality and morbidity in Cushing's syndrome in New Zealand

Mark J. Bolland*, Ian M. Holdawayt, Juliet E. Berkeley‡, Sarina Lim§, Will J. Dransfield¶, John V. Conaglen§, Michael S. Croxsont, Greg D. Gamble*, Penny J. Hunt‡ and Robyn J. Toomath¶

Entire cohort		Adrenal	Bilateral nodular	Pituitary	Pituitary	Occult	Probable
		adenoma	hyperplasia	macroadenoma*	microadenoma*	ectopic†	ectopic
	n = 253	n = 37	n = 9	n = 30	n = 158	n = 10	n = 9
Age at presentation (year) Duration of symptoms (year) Sex (% female) Duration of follow-up (year)	39 (15), range 5–75	41 (13)	41 (10)	45 (14)	36 (15)	33 (16)	53 (14)
	2·0 [0–21]	0·1 [0–21]	0·2 [0–10]	0·2 [0–17]	0·2 [0–20]	0·1 [0–3]	0·1 [0–3]
	76	89	78	73	77	30	56
	6·4 [0–46]	3·1 [0–18]	5·7 [1·5–39]	6·9 [0–30]	7·5 [0–46]	6·8 [0–28]	8·1 [0–16]


Data are mean (SD) for normally distributed data, median [range] for nonnormally distributed data, or percentage.

^{*}Pituitary macroadenoma ≥ 10 mm and pituitary microadenoma < 10 mm based on radiological imaging.

[†]Five bronchial carcinoid, three thymic carcinoid, one mediastinal neuroendocrine carcinoid and one medullary thyroid carcinoma.

Mortality and morbidity in Cushing's syndrome in New Zealand

Mark J. Bolland*, Ian M. Holdawayt, Juliet E. Berkeley‡, Sarina Lim§, Will J. Dransfield¶, John V. Conaglen§, Michael S. Croxsont, Greg D. Gamble*, Penny J. Hunt‡ and Robyn J. Toomath¶

Kaplan–Meier plots showing the per cent survival over time of patients with Cushing's syndrome due to Adrenal Adenoma compared with the expected survival for the New Zealand population matched by age, gender and duration of follow-up

Several years elapse between onset of Cushing Syndrome and its diagnosis, mainly because the manifestations such as weight gain, hypertension, diabetes and menstrual cycle irregularities are nonspecific and common, even in combination.

Importantly, if symptoms of CS are treated, the underlying cortisol overproduction remains unaffected.

Exposure to supraphysiological cortisol levels exerts ramified harmful effects such as hypercoagulability, insulin resistance, hypertension, bone loss and immunosuppression.

It is assumed that some cortisol-related effects persist after CS is cured, as continued elevation of cardiovascular risk has been observed despite disease remission.

Mortality is increased approximately twofold in patients with CS, with the highest mortality risk occurring in patients with persistent disease.

The present nationwide cohort study aimed to examine the risks faced by CS patients with respect to mortality, cardiovascular disease, fractures, peptic ulcers, and infections.

The source population consisted of the entire population of Denmark (7.6 million inhabitants from 1980 to 2010). Data were obtained from the Danish Civil Registration System (DCRS) and the Danish National Registry of Patients (DNRP).

All patients with an initial diagnosis of CS of pituitary or adrenal origin between 1980 and 2010 were eligible for inclusion. Patients who developed CS due to exogenous steroid treatment and patients with adrenal malignancies or ectopic CS were not included.

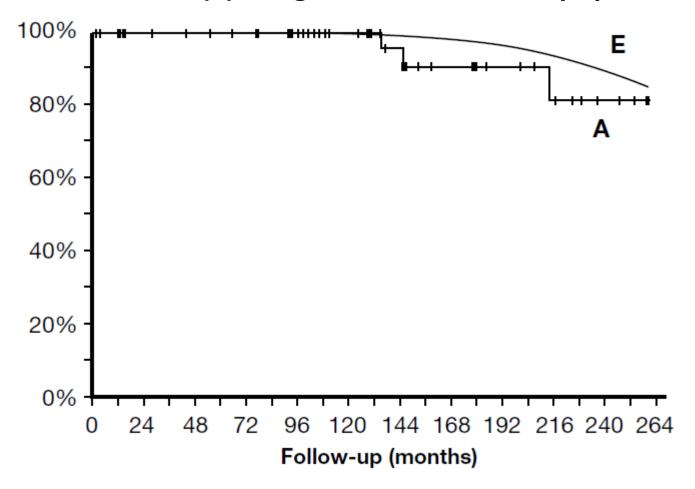
•

Table 2. Rates and hazard ratios with 95% confidence intervals (95% CI) for the risk of venous thromboembolism (VTE), acute myocardial infarction (AMI), stroke, heart failure, infections, ulcers, and fractures in patients with Cushing's syndrome (CS), stratified by follow-up time

Outcome	Period (years before/after diagnosis)	Rate (95% CI) per 1,000 person-years in CS cohort	Rate (95% CI) per 1,000 person-years in control cohort	Hazard ratio (95% CI), age and sex-adjusted model	Hazard ratio (95% CI), fully adjusted model *
VTE	3 yr before 1 yr after >1 to 30 yr	4.3 (1.1 - 9.3) 15.3 (4.9 - 31.4) 1.9 (0.8 - 3.6)	0.5 (0.4 - 0.7) 0.9 (0.6 - 1.2) 1.3 (1.2 - 1.4)	8.4 (3.0 –23.4) 20.6 (7.8 –53.9) 1.6 (0.8 –3.4)	6.8 (2.4–19.3) 17.1 (6.4–45.8) 1.4 (0.6–2.9)
AMI	after 3 yr before 1 yr after >1 to 30 yr after	2.1 (0.2 - 5.9) 6.1 (0.7 - 16.9) 6.0 (3.8 - 8.8)	0.9 (0.8 - 1.2) 1.4 (1.0-1.8) 1.9 (1.8 - 2.1)	2.2 (0.5–8.9) 4.5 (1.1–18.4) 3.6 (2.4–5.5)	2.1 (0.5–8.6) 3.5 (0.8–14.7) 2.8 (1.8–4.4)
Stroke	arter 3 yr before 1 yr after >1 to 30 yr after	5.3 (1.7 - 10.9) 9.1 (1.8 - 22.0) 4.3 (2.5 - 6.7)	1.1 (0.9 - 1.3) 1.4 (1.1 - 1.9) 2.7 (2.5-2.8)	5.0 (2.1–12.4) 6.5 (2.0–21.0) 1.8 (1.1–3.0)	4.5 (1.8–11.1) 4.3 (1.3–14.2) 1.5 (0.9–2.5)
Heart failure	3 yr before	4.3 (1.1 - 9.3)	0.6 (0.5 - 0.8)	6.8 (2.5–18.6)	6.0 (2.1–17.1)
	1 yr after >1 to 30 yr after	6.1 (0.7 - 17.0) 1.6 (0.6 - 3.1)	0.9 (0.6–1.3) 1.9 (1.8 – 2.0)	6.7 (1.6–28.1) 1.0 (0.4–2.2)	3.1 (0.7–14.2) 0.8 (0.3–1.7)
Fractures	3 yr before 1 yr after >1 to 30 yr after diagnosis	14.9 (7.9 - 24.0) 20.1 (7.4 - 39.2) 8.3 (5.5 - 11.6)	4.2 (3.8 - 4.7) 4.6 (3.8 - 5.4) 7.2 (6.9 - 7.4)	3.4 (2.0 – 6.0) 4.3 (1.9 – 9.7) 1.2 (0.8 – 1.7)	3.2 (1.9–5.6) 3.8 (1.7–8.7) 1.1 (0.8–1.6)
Infections	3 yr before 1 yr after	5.5 (1.8 – 11.3) 51.7 (29.6 -	2.1 (1.8 - 2.4) 2.4 (1.9-3.0)	2.6 (1.1–6.4) 22.3 (12.9–38.5)	2.4 (1.0–5.9) 17.8 (10.1–31.3)
	>1 to 30 yr	80.0) 12.7 (9.1 — 16.9)	3.7 (3.5 - 3.9)	3.7 (2.7–5.1)	2.9 (2.1-4.1)
Peptic ulcers	after 3 yr before	5.4 (1.7 - 11.0)	0.8 (0.6 - 1.0)	6.5 (2.6–16.0)	5.5 (2.2–13.9)
diceis	1 yr after >1 to 30 yr after	12.3 (3.3 — 27.0) 1.9 (0.8 — 3.6)	1.0 (0.6 — 1.3) 1.6 (1.5 — 1.7)	12.5 (4.4–35.5) 1.3 (0.6–2.8)	8.9 (3.0–26.3) 1.1 (0.5–2.2)

^{*} Model adjusted for age, sex, calendar time, cancer, diabetes, hypertension, chronic obstructive pulmonary disease, liver disease, and alcoholism-related diseases.

T	D			4 1 1 1 1 /4	ment of the	1 2 1
Table 4.	Preoperative vs	nostonerative	risk for venous	thromboembolism (V	TE) intectio	ns and pentic lilcers
I able T.	i i cobci ative vs.	DOSTODEIGUVE	HISK TOT VEHICUS	u ii oii iboci iibolisi ii v	TEA HITCCHO	ilis, aliu bebue ulceis


Outcome	Period	Hazard ratio (95% CI), age- and sex- adjusted model	Hazard ratio (95% CI), fully adjusted model *
VTE	1 yr before operation	10.2 (3.1–33.5)	8.6 (2.5–29.3)
	Operation to 3 months	59.9 (14.3–250.8)	58.8 (13.9–248.7)
	postoperatively > 3 to 12 months	5.8 (0.8–43.6)	3.6 (0.4–28.6)
Infections	pos to peratively 1 yr before operation	7.4 (3.0–18.5)	5.7 (2.2–14.4)
	Operation to 3 months postoperatively	53.5 (24.7–115.9)	38.2 (16.9–86.1)
	>3 to 12 months pos to peratively	14.1 (6.0 –33.1)	8.3 (3.3–20.4)
Peptic ulcers	1 yr before operation	7.5 (1.8–31.7)	7.1 (1.6–31.3)
	Operation to 3 months	13.9 (3.2–61.2)	9.9 (2.1–47.4)
	postoperatively >3 to 12 months pos to peratively	8.9 (2.1–37.8)	6.1 (1.4–27.6)

^{*} Model adjusted for age, sex, calendar time, cancer, diabetes, hypertension, chronic obstructive pulmonary disease, liver disease, and alcoholism-related diseases.

Table 3. Hazard ratios with 95% confidence intervals (95% CI) for the risk of venous thromboembolism (VTE), acute myocardial infarction (AMI), stroke, heart failure, infections, ulcers, and fractures in patients with Cushing's syndrome (CS) 0–30 yr after diagnosis, stratified by age category and type of Cushing Syndrome

Outcome	Patients [Iteq] 44 yr (n = 172)	Patients > 44 yr (n = 171)	Adrenal Cushing (n = 132)	Pituitary Cushing (n = 211)
Mortality VTE	Hazard ratio (95% CI), age and sex-adjusted model 3.9 (2.6–6.1) 2.5 (0.9–6.9)	Hazard ratio (95% CI), age and sex-adjusted model 2.0 (1.5–2.6) 2.7 (1.3–5.4)	Hazard ratio (95% CI), age and sex-adjusted model 2.4 (1.6–3.5) 2.4 (0.9–6.5)	Hazard ratio (95% CI), age and sex-adjusted model 2.3 (1.7–3.0) 2.8 (1.4–5.6)
AMI Stroke	5.5 (2.4–12.6) 2.0 (0.7–5.3)	3.3 (2.1–5.3) 2.1 (1.2–3.4)	3.8 (1.9–7.8) 1.9 (0.9–4.3)	3.6 (2.2–5.9) 2.1 (1.2–3.6)
Heart failure	1.1 (0.2–8.2)	1.3 (0.6–2.7)	1.2 (0.4–3.7)	1.3 (0.5–3.2)
Fractures Infections Peptic ulcers	1.7 (1.1–2.8) 5.5 (3.7–8.1) 0.6 (0.1–4.6)	1.1 (0.7–1.8) 4.4 (3.1–6.4) 2.5 (1.3–4.6)	0.8 (0.4–1.8) 4.9 (3.1–7.7) 2.5 (1.0–6.2)	1.6 (1.1–2.4) 4.9 (3.5–6.8) 1.7 (0.7–3.7)

Observed survival curve (A) in Cushing's patients after adrenalectomy for adrenocortical adenoma and expected survival curve (E) of age-matched control population

Variations of blood pressure and body mass index before and after adrenalectomy according to the duration of the follow-up

	Patients (no.)	Hypertensive Patients (no.)	Systolic BP (mm/g) (mean±SD)	Diastolic BP (mm/g) (mean±SD)	BMI (mean±SD)	Obese Patients (no.)	Overweight Patients (no.)	Patients with abnormal BMI (%)
Before surgery	50	40	157.4±16.5	96.2±10.8	28.7±3.1	29	18	94
Follow-up: 1 yr	50	3	121±7.8	80±4.2	26.2±2.1	15	24	78
Follow-up: 3 yr	44	7	125±6	84.3±2.1	25.4±4.5	10	20	68
Follow-up: 6 yr	40	11	132±7.1	85.5±2.2	24.3±3.1	4	19	23
Follow-up: 10 yr	27	7	135±22	86±3.2	23.4±3	0	10	37

Clinical features before and after adrenalectomy in a population of 50 patients with ACTH-independent hypercortisolism

	Before adrenalectomy	After adrenalectomy	р value
Hypertensive patients (no.)	40	17	<0.05
Systolic BP (mm/Hg) (in the 40 hypertensive patients before adrenalectomy) (mean±SD)	158.2±18.3	142±15.6	<0.001
Diastolic BP (mm/Hg) (in the 40 hypertensive patients before adrenalectomy) (mean±SD)	96.7±11.5	82.2±7.1	<0.001
Central obesity (no.)	48	1	<0.001
Mean BMI (Kg/m²) (mean±SD)	28.7±3.1	23.4±2	<0.001
Patients with abnormal BMI (no.)	47	19	<0.001
Dyslipidemia (no.)	40	16	< 0.05
Diabetes and glucose intolerance (no.)	48	8	<0.001
Asthenia (no.)	30	1	<0.001
Psychic symptoms (no.)	12	1	<0.001
Skin alterations (no.)	49	2	<0.001
Menstrual disorders (in 31 pre-menopausal women) (no.)	24	-1	<0.001
BMD* (mg/cm²) (mean±SD)	828±168	995±129	<0.001
T-score* (mean±SD)	-2.12±1.68	-0.59±1.24	<0.001
Patients with abnormal T-score (no.)*	13	6	<0.05

^{*}Referred to 19 patients. BP: blood pressure; BMD: bone mass density.

Bone Demineralization and Vertebral Fractures in Endogenous Cortisol Excess: Role of Disease Etiology and Gonadal Status

Libuse Tauchmanovà, Rosario Pivonello, Carolina Di Somma, Riccardo Rossi, Maria Cristina De Martino, Luigi Camera, Michele Klain, Marco Salvatore, Gaetano Lombardi, and Annamaria Colao

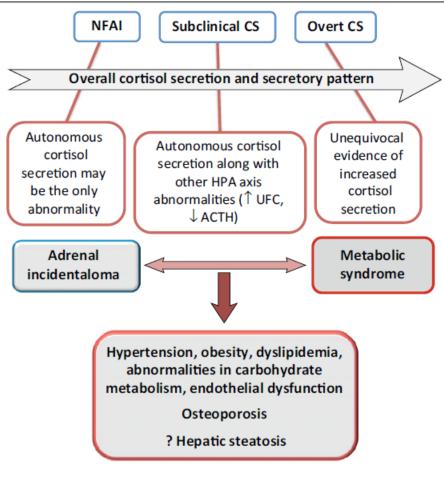
Variable	ACTH-secreting pituitary adenoma	Adrenal adenoma	Adrenal carcinoma	Ectopic ACTH excess	Controls
No. of subjects	37	18	15	10	80
Serum calcium (mmol/liter)	2.36 ± 0.13	2.38 ± 0.15	2.34 ± 0.14	2.39 ± 0.16	2.33 ± 0.11
Albumin (g/dl)	3.99 ± 0.44	4.06 ± 0.36	3.86 ± 0.5	4.28 ± 0.3	4.1 ± 0.3
Urinary calcium excretion (mg/24 h)	182 ± 95	215 ± 88	171 ± 44	192 ± 62	166 ± 73
iPTH (ng/liter)	43.4 ± 12	40.2 ± 14	38 ± 15	44.5 ± 13	41.2 ± 16
Osteocalcin (ng/ml)	1.5 ± 0.5^a	2.3 ± 0.7	2.4 ± 0.9	1.2 ± 0.4^a	8.9 ± 2.4^{b}
ALP (U/liter)	153 ± 52	174.5 ± 58	185 ± 61	187 ± 49	168 ± 58
Creatinine (µmol/liter)	86 ± 8.6	88 ± 8.9	90 ± 9	87 ± 8.7	82 ± 9.8
Hydroxyprolinuria (μmol/m²)	135 ± 41.5	129 ± 36	127.5 ± 32	137 ± 40	102 ± 16^{b}
Lumbar Z score (SD)	-1.97 (-5.15 to -0.06)	-1.8 (-4 to -0.36)	-1.8 (-2.9 to 0.9)	-3.53 (-4.9 to -3.0) ^c	-0.03 ± 1.1^d
Femoral Z score (SD)	-1.04 (-2.6 to 0.3)	-1.5 (-2.6 to 1.2)	-0.8 (-2.3 to 0.7)	-0.6 (-2.45 to -0.2)	0.05 ± 0.8^{b}
Prevalence (%) of any vertebral fracture	29 (78%)	12 (67%)	10 (67%)	10 (100%)	$1 (1.3\%)^d$
Clinical fractures ^e	15 (52%)	6 (60%)	4 (40%)	7 (70%)	$0 (0\%)^b$
Multiple fractures ^e	25 (86%)	9 (75%)f	8 (80%)f	10 (100%)	$0 (0\%)^d$

Data are expressed as mean \pm SD or median and range, as appropriate.

^a P < 0.05 vs. all other groups of patients.</p>

b P < 0.05 vs. all groups of patients.</p>

^c P < 0.01 vs. all other groups of patients.</p>


^d P < 0.01 vs. all groups of patients.

 $^{^{\}circ}$ The percentage of clinical and multiple fractures was calculated as a subset of patients with any fracture. Reference ranges: calcium, 2.2–2.6 mmol/liter; ALP, 98–275 U/liter; creatinine, less than 133 μmol/liter; albumin, 3.6–5.2 g/dl; osteocalcin, 2–22 ng/ml; PTH, 10–75 ng/liter; hydroxyproline excretion, 60–190 μmol/m².

fP < 0.05 vs. ectopic ACTH hypersecretion.

Current status and controversies in adrenal incidentalomas

Adrenal incidentalomas, comorbidities, and their interrelations

NFAI: Non-functional adrenal incidentaloma HPA: Hypothalamic—pituitary—adrenal

CS: Cushing syndrome UFC: Urinary free cortisol ACTH: Adrenocorticotropin

What is the frequency of incidental adrenal masses in the general population?

Clinical series:

3% in middle age 10% in the elderly

Male to female ratio:

1.3:1.5

Autopsy series:

<1% below 30 years of age 3% at 50 years >7% around 70 years

> Side

right 53% (50-60) left 37% (30-40) bilateral 10% (7-15)

What are the causes of incidental adrenal masses in the general population?

Average percentage in the literature

•	Adenoma	63%	(33-96)
	not-secreting	75%	(52-97)
	cortisol-secreting	9.5%	(1-29)
	aldosterone-secreting	2.5%	(1.6-2.3)
	estrogen/androgen-secreting	very rarely	
•	Pheochromocytoma	7%	(1.5-23)
•	Carcinoma	6.5%	(1.2-11)
•	Myelolipoma	8%	(7-15)
•	Cyst	5%	(4-22)
•	Ganglioneuroma	4%	(0-6)
	Motastases		

MELASIASES

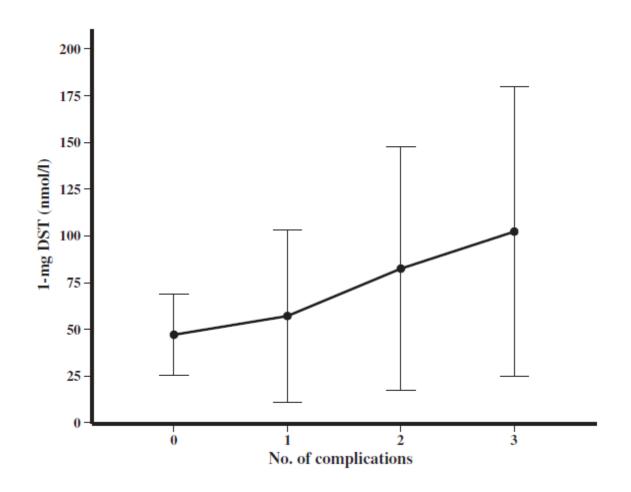
TABLE 2. Accuracy of HPA axis secretion parameters in diagnosing SH

First author, year (Ref.)	No. of patients	CCR (SN/SP)	ACTH (SN/SP)	UFC (SN/SP)	DST (SN/SP)	DEX dose, DST cutoff	Gold standard criteria for SH diagnosis
Mantero, 2000 (9)	1004	43/83	79/85	76/88	73/90	1 mg, 5 μg/dl	≥2 out of CRH, CCR, ACTH, UFC, DST
Libè 2002 (52)	64	n.a.	41/96	33/96	91/98	1 mg, 5 μg/dl	≥2 out of CRH, CCR, ACTH, UFC, DST
Masserini, 2009 (32)	103	22.7/87.7	86.4/59.3	31.8/92.6	86.4/96.3	1 mg, 3 μg/dl	≥2 out of DST, ACTH, UFC
Nunes, 2009 (31)	48	77/69 ^a 77/68 ^b	n.a.	n.a.	n.a.	1 mg, 2.2 μg/dl 1 mg, 2.2 μg/dl	DST plus ACTH or CCR DST plus ACTH or CCR
Barzon, 2001 (67)	83	n.a.	n.a.	n.a.	44/100 75/72	1 mg, 5 μg/dl 1 mg, 1.8 μg/dl	Norcholesterol scintigraphy Norcholesterol scintigraphy
Valli, 2001 (48)	31	n.a.	n.a.	n.a.	58/83 63/75 100/67	1 mg, 5 μg/dl 1 mg, 3 μg/dl 1 mg, 2.2 μg/dl	Norcholesterol scintigraphy Norcholesterol scintigraphy Norcholesterol scintigraphy
Eller-Vainicher, 2009 (58)	60	64.1/81 ^d	64.1/38	48.7/81	33.3/85.7	1 mg, 5 μg/dl	Postsurgical hypocortisolism
					59/52.4	1 mg, 3 μ g/dl	Postsurgical hypocortisolism
					79.5/23.8	1 mg, 1.8 μg/dl	Postsurgical hypocortisolism
Morelli, 2010 (59)	231	n.a.	52.4/60.5	42.9/80	23.8/93.3	1 mg, 5 μg/dl	Prevalence of complications
					52.4/81.4 71.4/49.5	1 mg, 3 μg/dl	Prevalence of complications ^e Prevalence of complications ^e
Eller-Vainicher 2010 (60)	55	65.2/65.6 ^c	n.a.	n.a.	21.7/96.9	1 mg, 1.8 μg/dl 1 mg, 5 μg/dl	Metabolic improvement after surgery ^f
					91.3/56.3	1 mg, 2.0 μg/dl	Metabolic improvement after surgery ^f

CRH, Blunted response to CRH; CCR, altered circadian cortisol rhythm (elevated MSeC or MSaC levels); ACTH, low ACTH levels [<10 pg/ml (2.2 pmol/liter)]; UFC, 24-h UFC levels above the upper limit of the normal range; DST, reduced cortisol suppression after a DST; DEX, dexamethasone; n.a., data not available; SN, sensitivity (%); SP, specificity (%).

^a MSaC levels [cutoff, 1.7 μg/liter (47 nmol/liter)].

^b MSeC levels [cutoff, 4.9 μ g/dl (135 nmol/liter)].


^c MSeC [cutoff, 4.0 μg/dl (110 nmol/liter)].

^d MSeC [cutoff, 5.4 μ g/dl (149 nmol/liter)].

^e Concomitant presence of vertebral fractures, arterial hypertension, and type 2 diabetes mellitus.

^f Improvement after surgery of at least two out of the following possible complications of SH: blood pressure, fasting glucose, body weight, and cholesterol levels.

Subclinical hypercortisolism: correlation between biochemical diagnostic criteria and clinical aspects

Progressively increased patterns of subclinical cortisol hypersecretion in adrenal incidentalomas differently predict major metabolic and cardiovascular outcomes: a large cross-sectional study

Guido Di Dalmazi, Valentina Vicennati, Eleonora Rinaldi, Antonio Maria Morselli-Labate, Emanuela Giampalma¹, Cristina Mosconi¹, Uberto Pagotto and Renato Pasquali

Clinical outcomes in groups of patients with different patterns of cortisol secretion

	Secreting pattern					
,	NSA (n=203)	ImP (n=71)	IMP (n=55)	SCS (n=19)	P value ^a	
Clinical outcomes						
Hypertension (n; %)	149 (73.4)	58 (81.7)	43 (78.2)	18 (94.7)	0.173	
T2D (n; %)	31 (15.2)	13 (18.3)	18 (32.7) ^b	8 (42.1) ^{b,c}	0.004	
CHD (n; %)	6 (2.9)	9 (12.6) ^b	6 (10.9) ^d	5 (26.3) ^b	0.002	
Stroke (n; %)	1 (0.5)	2 (2.8)	3 (5.4) ^d	1 (5.2)	0.194	
Osteoporosis (n; %)	30 (14.8)	7 (9.8)	8 (14.5)	9 (47.3) ^{b,e,f}	0.003	
Osteoporotic fractures (n; %)	5 (2.5)	3 (4.2)	1 (1.8)	3 (15.8) ^d	0.056	

aComparisons of outcomes among the four groups (univariate logistic regression).

^bPairwise comparisons between groups (simple contrasts applied to the logistic regression): P<0.01 reference category, NSA.

^cPairwise comparisons between groups (simple contrasts applied to the logistic regression): P<0.05 reference category, ImP.

^dPairwise comparisons between groups (simple contrasts applied to the logistic regression): P<0.05 reference category, NSA.

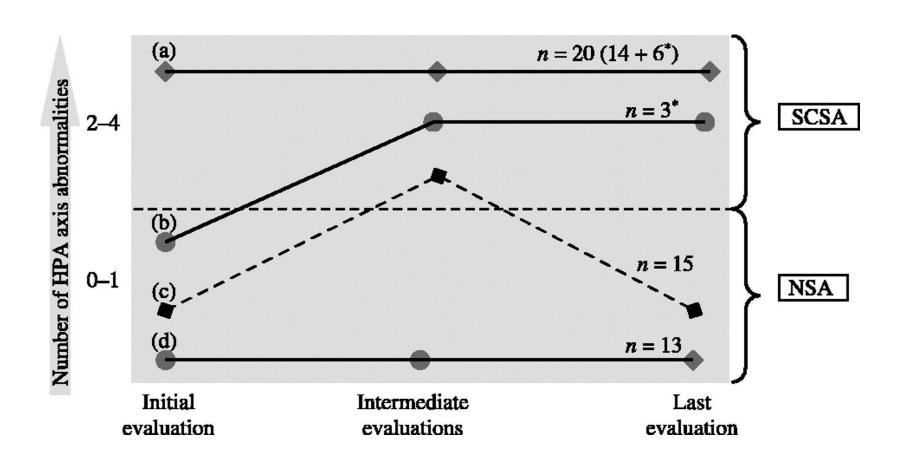
Pairwise comparisons between groups (simple contrasts applied to the logistic regression): P<0.01 reference category, ImP.

Pairwise comparisons between groups (simple contrasts applied to the logistic regression): P<0.01 reference category, IMP.

Progressively increased patterns of subclinical cortisol hypersecretion in adrenal incidentalomas differently predict major metabolic and cardiovascular outcomes: a large cross-sectional study

Guido Di Dalmazi, Valentina Vicennati, Eleonora Rinaldi, Antonio Maria Morselli-Labate, Emanuela Giampalma¹, Cristina Mosconi¹, Uberto Pagotto and Renato Pasquali

Odds ratios for T2D, CHD, osteoporosis, and osteoporotic fractures for potential risk factors in groups of patients with different patterns of cortisol secretion


	T2D			CHD			Osteoporosis		Osteoporotic fractures			
	OR	95% CI	Р	OR	95% CI	Р	OR	95% CI	Р	OR	95% CI	Р
Risk factors												
IP-secreting pattern (IP vs NSA)	1.702	0.939-3.082	0.079	4.094	1.473-11.378	0.007	0.637	0.312-1.300	0.215	1.130	0.290-4.398	0.860
Age (1-year increase)	1.026	1.004-1.049	0.021	1.023	0.999-1.047	0.055	1.031	1.009-1.055	0.006	1.028	1.006-1.051	0.012
BMI (1 unit increase)	0.989	0.948-1.032	0.617	0.993	0.950 - 1.038	0.752	0.992	0.951 - 1.034	0.710	0.996	0.956-1.038	0.863
Gender (female vs male)	0.875	0.533-1.435	0.597	0.794	0.475 - 1.325	0.377	0.795	0.474-1.334	0.385	0.870	0.528-1.435	0.586
Family history of T2D	0.988	0.592-1.651	0.965	_	_	-	_	_	_	_	-	_
(presence vs absence)												
Hypertension (presence vs absence)	-	-	_	0.948	0.512-1.757	0.866	_	_	_	_	_	_
T2D (presence vs absence)	-	_	_	1.643	0.891-3.029	0.112	_	_	_	_	-	_
Dyslipidemia (presence vs absence)	-	_	_	0.875	0.531-1.442	0.600	_	_	_	_	_	_
Smoking status (smokers	-	_	_	1.050	0.768 - 1.436	0.760	1.080	0.796-1.466	0.621	0.742	0.366-1.501	0.406
vs nonsmokers)												
SCS-secreting pattern (SCS vs NSA)	3.443	1.181-10.038	0.024	6.104	1.407-26.490	0.016	5.940	1.793-19.677	0.004	6.530	1.292-32.994	0.023
Age (1-year increase)	1.059	1.006-1.116	0.029	1.045	0.989-1.103	0.116	1.043	0.987-1.103	0.132	1.054	1.002-1.108	0.040
BMI (1 unit increase)	0.962	0.872-1.060	0.434	0.965	0.872-1.068	0.489	1.015	0.917-1.123	0.774	0.988	0.894-1.092	0.810
Gender (female vs male)	0.807	0.285-2.286	0.686	0.757	0.258-2.220	0.613	1.872	0.557-6.286	0.310	1.160	0.395-3.406	0.788
Family history of T2D	0.869	0.284-2.654	0.805	_	_	_	_	_	_	_	_	_
(presence vs absence)												
Hypertension (presence vs absence)	_	_	_	2.932	0.341-25.177	0.327	_	_	_	_	_	_
T2D (presence vs absence)	_	_	_	2.736	0.926-8.085	0.069	_	_	_	_	_	_
Dyslipidemia (presence vs absence)	_	_	_	0.935	0.330-2.654	0.900	_	_	_	_	_	_
Smoking status (smokers vs nonsmokers)	-	-	-	0.764	0.379-1.538	0.450	0.664	0.317-1.395	0.280	0.742	0.366-1.501	0.406

IP, intermediate phenotype; SCS, subclinical Cushing's syndrome, using multivariate logistic regression analysis. The reference category is NSA.

Long-term follow-up in adrenal incidentalomas: an Italian Multicentre Study

Methods. In this retrospective study all patients referred to 7 Italian Endocrine Centers for AI, without signs of hypercortisolism at baseline and with a ≥5 years follow-up (mean SD 82.5 32.1 months), were enrolled. The changes in weight, glucose and lipid metabolism, blood pressure control and the occurrence of CVE were obtained from 206 patients (144 F). Patients were classified as affected with subclinical hypercortisolism (SH) in the presence of cortisol after 1mg dexamethasone suppression (1-mgDST) test >5 mcg/dl or ≥2 parameters out of low ACTH, increased urinary free cortisol and 1-mgDST > 3 mcg/dl. At the end of follow-up a new **RESULTS** FOLLOW-UP (206) diagnosis of SH was made in 15 patients (7.3%) included in the SH- (167) SH+ (39) SH- (167) SH+ (39) SH+ group also for the basal 68.5 11.0 62.2 11* 65.3 9.9 58.5 10.1 Age (yrs) analysis. (25-79)(25-78)(35-86)(35-91)27.9±5.0 28.3±5.6 28.2±5.4 29.2±6.0 BMI (kg/m²) (17.3-44.7)(19.4-47)(17-52.1)(19.3-49.6)18 11* 22 12# The adenoma size Bilateral adenomas n. (%) (10.8)(28.2)(13.2)(30.8)(baseline 2.3±0.8 cm) 2.2±0.7 2.8±0.9* 2.5±0.9 3.1±1.0*# Diameter of adenoma (cm) increased >2.5 cm in the (1.0-4.0)(1.5-6.0)(1.0-8.4)(1.6-6.2)2.4% of cases. 16.1±11.5 11.3±6.0* 16.9±10.6 8.6±3.8*# ACTH (pg/mL) (2-78)(3-28)(1.4-72)(3.0-19.8)1.6±0.8 3.5±2.1* 1.6±0.8 4.9±2.2*#∞ 1mg-DST (μg/dL) (0.2-4.9) (1.1-9.3) (0.1-4.1)(1.5-10.4)The weight and glycaemic -42.0±36.0 -14±68.5* -39.6±34.4 -14.1±50.7*# UFC % (-90.9-134)(-85.7-266) (-93.3-111.4) (-89.1-121.3) control. and LDL-46 13 54 18 cholesterol worsened in the Obese subjects n. (%) (27.5)(33.3)(32.3)(46.2)26% 25% and 13%, of 17*# 37 patients respectively, with Diabetic patients n. (%) (22.2)(43.6)no differences between 90* 27* 70 SH+ and SH-. Dyslipidemic patients n. (%) (41.9)(53.8)(53.9)(69.2)26 34∞#* 90 105 The blood pressure control Hypertensive patients n. (%) (53.9)(66.7)(62.9)(87.2)worsened in the 46% of 22 new CVE Patients with CVE n. (%) SH+ and 31% of SHpatients (P=0.07). *P<0.05 vs SH- at baseline; #P<0.05 vs SH- at follow-up; 8.4% in SH- vs 20.5% in SH+ patients (P=0.04). The logistic regression analysis showed that The presence of SH was significantly associated with SH and T2DM were independently associated the occurrence of new CVE (OR 2.7, 95%CI 1.0-7.1 to the presence of CVE (OR 3.1, 95%CI 1.1-9.0 and OR 2.0, 95%CI 1.2-3.3 respectively. respectively, P=0.04), regardless of the worsening of blood pressure and the duration of follow-up. P<0.05) regardless of age.

Figure 1 Illustration of hormonal evolution during follow-up.

Fagour C et al. Eur J Endocrinol 2009;160:257-264

TABLE 4. Studies investigating the effect of the recovery from SH on blood pressure, body weight, fasting glucose, and bone

		SH	+	SH	1-						
First author, year (Ref.)	Design	Surg (n)	Cons (n)	Surg (n)	Cons (n)	FU (months)	SH criteria	ВР	BW	FG	Bone
Rossi, 2000, (18)	Prosp.	5	7	13	25	18–300	Cortisol >5.0 μg/dl after			^ª	- Boile
110331, 2000, (10)	11059.	3	·	13	23	10 300	1-mg DST plus 1 out of: high UFC, low ACTH, loss of F rhythm, blunted ACTH after CRH			'	
Midorikawa, 2001 (46)	Prosp.	4	-	8	-	1	Cortisol $>$ 3.0 μ g/dl after 1-mg DST and low ACTH	\$ ^a	Ţ	↑ª	-
Emral, 2003 (54)	Prosp.	3	1	3	57	n.a.	Cortisol >3.0 μg/dl and UFC reduction < 50% after 3-mg DST	1	1	1	-
Bernini, 2003 (93)	Prosp.	6	-	9	-	12	Cortisol >5.0 μg/dl after 1-mg DST	↑ª	\downarrow	↑ª	-
Erbil, 2006 (94)	Retrosp.	11	-	-	83	12	Cortisol $>$ 3.0 μ g/dl after 1-mg DST and 8-mg DST	1	\$	\$	-
Mitchell, 2007 (95)	Retrosp.	9	-	-	-	1–30	Cortisol >1.0 µg/dl after 1-mg DST plus 1 out of: high UFC, low ACTH, low DHEAS, lateralization with AVS, clinical signs	1	1	1	-
Tsuiki, 2008 (96)	Retrosp.	10	12	-	-	7–19	Cortisol >3.0 µg/dl after 1-mg DST and ≥1.0 µg/dl after 8-mg DST plus 1 out of: low ACTH, loss of CCR, low DHEAS, AS uptake	1	\	1	-
Toniato, 2009 (57)	Prosp. Rand.	23	22	-	-	24–204	Cortisol >5.0 µg/dl after 1-mg DST plus 1 out of: high UFC, low ACTH, loss of CCR rhythm, blunted ACTH after CRH	1	-	1	1
Sereg, 2009 (97)	Retrosp.	5	8	42	70	109 ± 37	Cortisol >3.6 µg/dl after 1-mg DST and/or MSeC >5 µg/dl	\	\	\downarrow	-
Chiodini, 2010 (61)	Retrosp.	25	16	30	37	18–54	2 out of: cortisol $>$ 3.0 μ g/dl after 1-mg DST, low ACTH, high UFC	↑ª	1	1	-

SH+, Patients with SH; SH-, patients without SH; FU, range of follow-up; Surg, number of surgically treated patients; Cons, number of patients followed up with conservative approach; BP, blood pressure; BW, body weight; FG, fasting glucose; CCR, altered circadian cortisol rhythm (elevated MSeC or MSaC levels); low ACTH, ACTH levels <10 pg/ml; high UFC, 24-h UFC levels above the upper limit of the normal range; DST, reduced cortisol suppression after a DST; Prosp., prospective; Retrosp., retrospective; Rand, randomized; Cortisol, serum cortisol; AVS, adrenal vein sampling; AS, adrenal scintigraphy; n.a., not available; ↑, improvement; ↓, possible improvement; ↓, stable; –, not evaluated. SI conversion factors: cortisol × 27.56; ACTH × 0.22.

a Improvement also in SH-treated subjects.

Risk of New Vertebral Fractures in Patients With Adrenal Incidentaloma With and Without Subclinical Hypercortisolism: A Multicenter Longitudinal Study

Clinical and Biochemical Modifications in Patients With and Without SH, at Baseline and After 2 Years of Follow-up

	Base	eline	24 Months o	of follow-up
	SH ⁺ (27)	SH ⁻ (76)	SH ⁺ (27)	SH ⁻ (76)
Age (years)	65.0 ± 8.7 (41-83)	62.7 ± 10.3 (28-80)	67.0 ± 8.5 (43-85)	64.9 ± 10.2 (30-82)
BMI (kg/m²)	$26.6 \pm 4.3 \ (19.3 – 35.6)$	$27.5 \pm 4.4 \ (20-39.8)$	$27.1 \pm 4.2 \ (19.3 - 34.5)$	$27.9 \pm 4.6 \ (20-41)$
Diameter of adenoma (cm)	$2.8 \pm 1.0^{a} (1.0 - 5.0)$	$2.1 \pm 0.7 \ (0.3 – 3.8)$	$2.9 \pm 1.0^{\circ} (1.2 - 5.0)$	$2.2 \pm 0.7 (1.0 – 4.1)$
ACTH (pg/mL)	$8.6 \pm 3.7^{a} (5-20.2)$	$16.9 \pm 11.2 \ (5-62.8)$	$9.1 \pm 3.5.0^{\circ} (5-16)$	$18.0 \pm 10.5 (5-57)$
1-mg DST (μg/dL)	3.0 ± 1.2^{a} (1.3-6.2)	$1.5 \pm 0.7 \; (0.5 - 4.6)$	$2.6 \pm 1.0^{\circ} (0.7 - 4.2)$	$1.4 \pm 0.8 (0.4 - 5)$
UFC (μg/24 hours)	66.8 ± 54.4^a (11.4–263.5)	$42.3 \pm 26.9 \ (10.0 - 150.7)$	$58.3 \pm 36.0^{\circ} (11.0 - 138.6)$	40.0 ± 19.6 (10.0-93.2)
LS BMD (Z-score)	$0.01 \pm 1.17 \; (-1.8 2.5)$	0.03-1.38 (-2.8-4.1)	$0.27 \pm 1.37 \ (-2.0 - 3.6)$	$0.16 \pm 1.45 \ (-2.6 - 4.6)$
FN BMD (Z-score)	$-0.04 \pm 0.99 \; (-2.4 – 2.7)$	$0.07 \pm 0.78 \; (-1.6 2.1)$	$0.00 \pm 1.07 \ (-2.4 - 2.6)$	$0.11 \pm 0.83 \ (-1.7 - 2.9)$
SDI	$1.11 \pm 1.50^{\text{ b, d}} (0-6)$	$0.58 \pm 1.10 (0-4)$	$2.11 \pm 1.85^{\circ}$ (0-8)	$0.79 \pm 1.40 \ (0-6)$
No. of patients with	15 ^{b, d} (55.6)	22 (28.9)	22 ^c (81.5)	27 (35.5)
vertebral fractures (%)				
No. of new vertebral	_	_	13 ^c (48.1)	10 (13.2)
fractures (%)				

Data are mean \pm SD, with range in parentheses or absolute number with percentage in parentheses. BMI = body mass index; 1-mg DST = serum cortisol levels after 1-mg dexamethasone suppression test; UFC = urinary free cortisol; ACTH = adrenocorticotropic hormone; LS and FN BMD = bone mineral density measured by DXA at spine (L_1 – L_4) and femoral neck, respectively; SDI = spinal deformity index, sum of the fracture grades of all vertebrae (T_4 – T_4), assigning for each vertebra a visual semiquantitative grade of 0, 1, 2, or 3 for no fracture or mild, moderate, or severe fracture, respectively; SH⁺ = subclinical hypercortisolism was diagnosed in the presence of two of the following: 1-mg DST > 3 μ g/dL (82.7 nmol/L), UFC > 70 μ g/24 hours (193.0 nmol/24 hours), and ACTH < 10 pg/mL (2.2 pmol/L); SH⁻ = patients without subclinical hypercortisolism.

 $^{^{\}mathrm{a}}p$ < .005 SH $^{+}$ versus SH $^{-}$ at baseline.

 $^{^{\}rm b}p$ < .05 SH $^{+}$ versus SH $^{-}$ at baseline.

^cp < .005 SH⁺ versus SH⁻ at follow-up.

 $^{^{}d}p$ < .05 SH $^{+}$ at baseline versus SH $^{+}$ at follow-up.

Risk of New Vertebral Fractures in Patients With Adrenal Incidentaloma With and Without Subclinical Hypercortisolism: A Multicenter Longitudinal Study

Odds Ratio for New Vertebral Fractures for Potential Risk Factors Using Logistic Regression Analysis

	Odds ratio	p Value	95% confidence interval
Age (1-year increase)	1.037	0.474	0.939-1.146
Years since menopause (1-year increase)	1.023	0.609	0.929-1.130
Female versus male gender	1.644	0.645	0.199-13.592
BMI (1 kg/m ² increase)	1.027	0.691	0.901-1.169
Lumbar spine BMD (1 Z-score unit decrease)	1.154	0.496	0.764-1.744
SH (presence versus absence)	12.264	0.001	4.118-36.529
Basal SDI	1.540	0.355	0.971-2.445

BMI = body mass index; LS and FN BMD = bone mineral density measured by DXA at spine (L_1-L_4); SH = subclinical hypercortisolism was diagnosed in presence of two of the following: 1-mg DST > 3 μ g/dL (82.7 nmol/L), UFC > 70 μ g/24 hours (193.0 nmol/24 hours), and ACTH < 10 pg/mL (2.2 pmol/L).

Surgical Versus Conservative Management for Subclinical Cushing Syndrome in Adrenal Incidentalomas: A Prospective Randomized Study

- ...Over a 15-year period, 45 SCS patients were randomly selected to undergo surgery (n 23) or conservative management (n 22). All surgical procedures were laparoscopic adrenalectomies performed by the same surgeon.
- All patients were followed up (mean, 7.7 years; range, 2–17 years) clinically by 2 experienced endocrinologists 6 and 12 months after surgery and then yearly, or yearly after joining the trial, particularly monitoring diabetes mellitus (DM), arterial hypertension, hyperlipidemia, obesity, and osteoporosis.

The study end point was the clinical outcome of SCS patients who underwent adrenalectomy versus those managed conservatively.

Results: All 23 patients in the surgical arm had elective surgery. Another 3 patients randomly assigned to conservative management crossed over to the surgical group due to an increasing adrenal mass 3.5 cm. **In the surgical group**,

DM normalized or improved in 62.5% of patients (5 of 8), hypertension in 67% (12 of 18), hyperlipidemia in 37.5% (3 of 8), and obesity in 50% (3 of 6). No changes in bone parameters were seen after surgery in SCS patients with osteoporosis. On the other hand, some worsening of **DM**, hypertension, and

hyperlipidemia was noted in conservatively-managed patients.

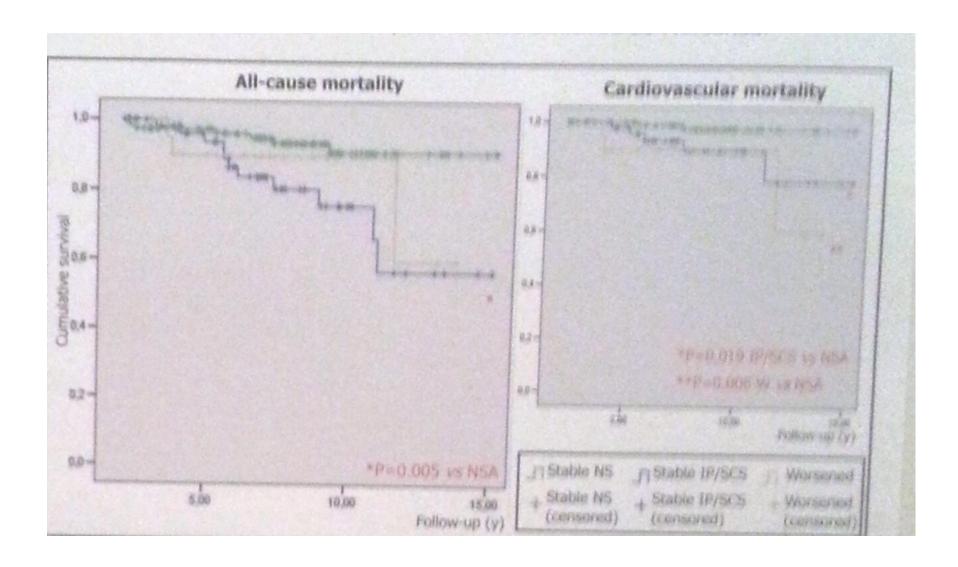

Toniato A et al Ann Surg 2009

TABLE 3. Change of body weight, blood pressure, fasting glucose, and LDL cholesterol in treated and untreated patients with and without subclinical hypercortisolism

	SH+ treated (n = 25)	SH+ untreated (n = 16)	SH- treated (n = 30)	SH- untreated (n = 37)
Steady body weight, n (%)	15 (60.0)	10 (62.5)	21 (70)	25 (67.6)
Decreased body weight, n (%)	8 (32.0) ^{a,b}	2 (12.5)	3 (10.0)	2 (5.4)
Increased body weight, n (%)	2 (8.0)	4 (25.0)	6 (20.0)	10 (27.0)
Steady blood pressure, n (%)	11 (44.0)	8 (50.0)	17 (56.7)	21 (56.8)
Improved blood pressure, n (%)	14 (56.0) ^{b,c}	0 (0.0)	9 (30.0) ^d	5 (13.5)
Worsened blood pressure, n (%)	0 (0.0) ^c	8 (50.0) ^e	4 (13.3)	11 (29.7)
Steady fasting glucose, n (%)	13 (52.0)	10 (62.5)	26 (86.7)	30 (81.1)
Improved fasting glucose, n (%)	12 (48.0) ^{b,c}	0 (0.0)	3 (10.0)	3 (8.1)
Worsened fasting glucose, n (%)	0 (0.0) ^c	6 (37.5) ^{b,d}	1 (3.3)	4 (10.8)
Steady LDL cholesterol, n (%)	10 (40.0)	5 (31.2)	19 (63.3)	11 (29.8)
Improved LDL cholesterol, n (%)	9 (36.0)	3 (18.8)	8 (26.7)	9 (24.3)
Worsened LDL cholesterol, n (%)	6 (24.0) ^a	8 (50.0) ^b	$3(10.0)^f$	17 (45.9)

^aP 0.05 vs. untreated SH patients. ^bP 0.01 vs. treated SH patients. ^cP 0.001 vs. untreated SH patients. ^dP 0.05 vs. untreated SH patients. ^eP 0.05 vs. treated SH patients. ^fP 0.001 vs. untreated SH patients.

Mortality in long-term follow up patients with progressively Increased patterns of subclinical cortisol hypersecretion

