Altogether to Beat Cushing's Syndrome

Viaggio alla (ri)scoperta della Sindrome di Cushing Quarta Edizione Napoli, 5-7 maggio 2015 THE MOST COMMON FORMS OF PSEUDO-CUSHING: PCOS AND DEPRESSION

Nora Albiger U.O.C Endocrinology University of Padua

76–100 case / million/year F > M

10% women of reproductive age

Mean 4-hour plasma ACTH and cortisol profiles in PCOS women and controls

16 PCOS BMI: 20 to 24 kg/m 2; 17 to 35 years 16 controls (BMI, 18 to 20 kg/m 2) 24 to 32 years

8 AM and 12 AM (9 PCOS, 8 controls)

11 PM and 3 AM (7 PCOS, 8 controls)

AUC	PCOS	control	Р	
ACTH	760 ± 85.3	472 ± 40.6	<0.05	
F	36.9 ± 6.25	21,1 ± 2.3	<0.05	

Invitti et al Metabolism 1998

Increased 5α -Reductase Activity and Adrenocortical Drive in Women with Polycystic Ovary Syndrome

Dimitra A. Vassiliadi, Thomas M. Barber, Beverly A. Hughes, Mark I. McCarthy, John A. H. Wass, Stephen Franks, Peter Nightingale, Jeremy W. Tomlinson, Wiebke Arlt, and Paul M. Stewart

Increased 5α reductase activity (An/Et (androsterone/etiocholanolone) and 5α THF/5 β THF ratios) in PCOS patients

NOC, Non-obese controls NOP, non-obese PCOS OC, obese controls OP, obese PCOS

Insulin enhances ACTH-stimulated androgen and glucocorticoid metabolism in hyperandrogenic women

Tosi F.. Moghetti P et al EJE 2011

Increased 5 α -Reductase Activity and Adrenocortical Drive in Women with Polycystic Ovary Syndrome

Dimitra A. Vassiliadi, Thomas M. Barber, Beverly A. Hughes, Mark I. McCarthy, John A. H. Wass, Stephen Franks, Peter Nightingale, Jeremy W. Tomlinson, Wiebke Arlt, and Paul M. Stewart

JCEM 2009

Tissue-specific dysregulation of 11*b-HSD* type 1 in overweight/obese women with PCOS and weight-matched controls

CS

Screening for CS in obese women with and without PCOS

Subjects	Age	BMI	Plasma cortisol, nmol/l			iol/l		UFC
	yr	kg/m ²	08:00 h	17:00 h	24:00 h	1-mg DST	08:00/24:00 h ratio	nmol/24 h
Cushing's syndrome	34.3±1.01**	30.6±1.26**	589.5±28.92**	597.1±43.79**	578.5±39.26**	470.6±30.06*	* 1.1±0.05**	1831.0±661.60**
Obese with PCOS	24.4±0.73	36.0±0.92*	392.3±19.65	233.4±18.00	130.0±14.18	41.1±8.10	6.3±0.87	173.6±12.19*
Obese without PCO	4.5±1.20 S	39.2±1.09	345.1±15.82	209.4±22.61	109.6±12.63	28.1±4.67	5.8±0.78	123.0±7.71

PCOS: 60; simple obesity: 58; CS: 57 patients

Putignano P et al JEI 2003

Polycystic ovarian syndrome and Cushing's syndrome: a persistent diagnostic quandary

Jessica Brzana^a, Christine G. Yedinak^{b,c}, Nadia Hameed^a, Adeline Plesiu^a, Shirley McCartney^{b,c}, Maria Fleseriu^{a,b,c,*}

^a Department of Medicine, Division of Endocrinology, Portland, OR, USA ^b Department of Neurological Surgery, Portland, OR, USA ^c Northwest Pituitary Center, Oregon Health & Science University, Portland, OR, USA

Prevalence of clinical symptoms and signs based on initial diagnosis.

Symptom/sign	CD after PCOS (n=13)	CD (no PCOS) (n=13)	P value
Himutiem	100.0%	60.2%	0.03
niisuusiii	100.0%	09.2%	0.05
Menstrual irregularities	100.0%	72.7%	0.02
Facial rounding	100.0%	76.9%	0.08
Supraclavicular fullness	100.0%	76.9%	0.07
Dorsocervical fullness	92.3%	84.6%	0.56
Weight gain	92.3%	100.0%	0.33
Central adiposity	92.3%	92.3%	1.0
Facial plethora	84.6%	69.2%	0.37
Acne	84.6%	53.8%	0.09
Depression	69.2%	53.8%	0.44
Easy bruising	69.2%	61.5%	0.69
Violaceous striae	61.5%	61.5%	1.0
Alopecia	61.5%	30.8%	0.13
Subjective proximal weakness	53.8%	61.5%	0.70
Hypertension	53.8%	69.2%	0.44
Sleep disturbance	46.2%	61.5%	0.45
Diabetes mellitus	30.8%	15.4%	0.37

How common are polycystic ovaries and the polycystic ovarian syndrome in women with Cushing's syndrome?

G. A. Kaltsas*, M. Korbonits*, A. M. Isidori*, J. A. W. Webb†, P. J. Trainer*, J. P. Monson*, G. M. Besser* and A. B. Grossman*

13 premenopausal women with CS (32 yrs range 18-39 yrs)

Hyperandrogenism	13/13 (100%)
Irsutism	13/13 (100%)
Acne	7/13 (53%)
male pattern alopecia	5/13 (39%)
Acanthosis nigricans	0/13
Menstrual irregularity	9/13 (70%)
oligomenorrhoea	4/9
amenorrhoea	4/9
polymenorrhoea	1/9
Normal menstrual	4/13 (30%)
pattern	
Succesful pregnancies	4/13 (31%)
Spontaneous abortion	1/13 (8%)
Obesity (BMI > 30)	2/13 (15%)
DBT or IGT	0/3

00	Ovarian s	ize (ml)	Ovarian		
patients	Right	Left	Right	Left	Diagnosis
1	3.9	2.3	Normal	Normal	
2	11.6	7.4	Normal	Normal	? PCO R
3	2.8	2.7	Normal	Normal	
4	4.5	3.3	Normal	Normal	
5	12.8	4.9	Normal	Normal	
6	6.3	5.6	Multiple follicles	Multiple follicles	PCO
7	12.6	13	Multiple follicles	Multiple follicles	PCO
8*	7.3	9.6	Multiple follicles	Multiple follicles	PCO
9*	11	Not seen	5 follicles	_	
10*	7.1	9.3	Normal	Multiple follicles	PCO
11*	3.1	3.3	Normal	Normal	
12*	8.5	3.9	Multiple follicles	Multiple follicles	
13*	12	7.3	Normal	Multiple follicles	PCO

* Women with CS and oestradiol levels >140 pmol/l.

Testosterone and Bioavailable Testosterone Help to Distinguish between Mild Cushing's Syndrome and Polycystic Ovarian Syndrome^{*}

Test	Cushing's syndrome	PCOS	p-Value
age (years)	34.0±6.7	29.8±7.6	0.08
BMI (kg/m ²)	37.7±1.7	37.7±1.6	0.99
total testosterone (nmol/L)	0.75±0.08	1.75±0.17	<0.0001
bioavailable testosterone (nmol/L)	0.29±0.08	0.56±0.08	0.02
SHBG (nmol/L)	28.4±4.1	28.0±4.6	0.95
FAI (testosterone/SHBG)	3.43±0.66	9.30±1.60	0.003

CS= 20 patients; PCOS= 20 patients

All values are mean±SEM, except age, which is mean±SD

Parameter (cut-off)	Sens. %	Spec. %
TT (1.39 nmol/l)	95	70
BT (0,24 nmol/l)	75	80
FAI (5,7)	88	60

Pall ME et al Horm Metab Res 2008

Conclusions 1

> Among the uncertainties surrounding the etiology of PCOS the role of altered

cortisol metabolism is prominent

PCOS may be a manifestation of CS and the likelihood of a diagnosis of CS increases, however, as the overlap of clinical features increases

Compared to the high prevalence of PCOS, CS is relatively uncommon but should always be considered in the differential diagnosis to avoid the long-term consequences of a delay diagnosis of CS

PSEUDO-CUSHING AND DEPRESSION

Clinical charcteristic in patients with CS (grey bar) and with PCS (white bar)

Cortisol in the onset and course of major depression disorder (MDD)

- Diurnal rhythms in cortisol are disturbed in around half the cases of MDD (Sachar et al. 1973)
- There is increased resistance to the feedback action of GC on the activity of the HPA axis in a proportion of cases (Carroll et al. 1968; Carroll, 1982);
- The post-awakening surge in cortisol is accentuated in those at risk for MDD (Portella et al. 2005);

Twenty-Four-Hour ACTH and Cortisol Pulsatility in Depressed Women

Elizabeth A. Young, M.D, Nichole E. Carlson, M.S., and Morton B. Brown, Ph.D.

25 premenopausal depressed; 25 controls

AUC: 10,712 ± 3,611 (SD) in controls AUC 12,051 ± 4,023 (SD) in patients (p 0.089) Baseline AUC p= 0.064

Hypercortisolism in 24% of patients (22-38% other studies)

NEUROPSYCHOPHARMACOLOGY 2001

AUC 4,950 \pm 1,875 (SD) in controls AUC 5,635 \pm 2,104 (SD) in patients Baseline AUC p=0.045

AUC per cortisolo e ACTH è significativa solo per i valori basali (p.064 ep.045)

Cortisol profile by subtype of depression

20 15 Cortisol, µg/dl 12 16 20 24 Clock Time, 24H

Endogenous Depression (n=6)

Atypical Depression (n=6)

Mean values during day

- overall group: 8.36 ±2.9 mcg/dl
- atypical depression: 8.38 ± 1.9 mcg/dl
- endogenous depression: 12.17 ± 4 mcg/dl

No correlation between severity and cortisol levels (F 2.46, r=0.11, p=0.13).

Diurnal Activity and Pulsatility of the Hypothalamus-Pituitary-Adrenal System in Male Depressed Patients and Healthy Controls

MICHAEL DEUSCHLE, ULRICH SCHWEIGER, BETTINA WEBER, ULRIKE GOTTHARDT, ANDREAS KÖRNER, JURGEN SCHMIDER, HARALD STANDHARDT, CLAAS-HINRICH LAMMERS, AND ISABELLA HEUSER

FIG. 2. Diurnal profiles of mean plasma ACTH in depressed patients and healthy controls (mean \pm SEM).

Higher levels of morning cortisol as a risk factor for subsequent MDD

Morning cortisol at age 13 in offspring of mothers with postnaltal depression (Halligan et al 2004)

Salivary cortisol in adolescent who will develop first event of MDD during a 4 yrs follow-up (Goodyer et al 2000) Differences in baseline circadian salivary cortisol levels between:

- placebo responders and non-responders (A),
- Fluoxetine responders and non-responders (B),
- Remitters (C)

rs242939 polymorphism (CRHR1) associated with early response to fluoxetine

Ventura-Juncá et al. BMC Psychiatry 2014, 14:220

Concomitant Medication Use Can Confound Interpretation of the Combined Dexamethasone-Corticotropin Releasing Hormone Test in Cushing's Syndrome

Elena Valassi, Brooke Swearingen, Hang Lee, Lisa B. Nachtigall, Daniel A. Donoho, Anne Klibanski, and Beverly M. K. Biller JCEM 94: 4851-4859, 2009

-		Sensitivity % (95% CI)		Speci	Specificity % (95% CI)		
Test	Cutoff ^a	Meds	No Meds	P value	Meds	No Meds	P value
Post- LDDST cortisol Post-LDDST cortisol 15 min post-CRH cortisol 15 min post-CRH cortisol 15 min post-CRH cortisol 15 min post-CRH ACTH 15 min post-CRH ACTH	1.4 (38) 1.8 (50) 1.4 (38) 1.8 (50) 2.5 (70) 16 (3.5) 27 (5.9)	73.3 (64.7–81.9) 70 (61–79) 88.2 (82.6–93.9) 82.3 (75.5–89.1) 70.5 (62.2–79) 75 (66.3–83.7) 64.2 (54.4–74.2)	85.7 (78.9–92.5) 85.7 (78.9–92.5) 93.1 (88.4–97.8) 89.6 (83.9–95.4) 86.2 (79.6–92.8) 84.6 (77.3–91.9) 73 (63.8–82.3)	0.77 0.61 0.88 0.81 0.60 0.76 0.75	70 (59-81) 80 (70.7-89.3) 75 (64.8-85.2) 80 (70.6-89.3) 90 (83.2-96.8) 85 (76.8-93.2) 95 (90.1-99.9)	96.1 (92.4–99.9) 96.1 (92.4–99.9) 92.3 (87–97.6) 96.1 (92.4–99.9) 96.1 (92.4–99.9) 96.1 (92.4–99.9) 100	0.014 0.08 0.10 0.08 0.87 0.77 0.90
	PP PP A B PP no inh inf	receptor antagonist Atypical antipsychotic proton pump inhibitor PARγ antagonists (3) Antiarrhythmics (2) B – Adrenoceptor bloc Benzodiazepine sedat Anticonvulsants (2) ARγ , Peroxisome prolif pradrenaline reuptake in hibitors. Number of test dicated in <i>parentheses</i> .	s (3) s (5) Olanzapi rs (6) Pantopra omepr Pioglitazo Quinidino kers (2) Propranc ives (2) Clonazep Tiagabino erator-activated recepto hibitors; SSRI, selective s performed on each cla	ne, quetiap zole, lanso azole one, rosigli e lol oam e, topirama or-y ; SNRI, s serotonin re ass of medic	pine prazole, tazone ate erotonin- uptake ation is		

Pathophysiology of Hypercortisolism in Depression: Pituitary and Adrenal Responses to Low Glucocorticoid Feedback

Bernard J. Carroll, M.D.¹, Ali Iranmanesh, M.D.², Daniel M. Keenan, Ph.D.³, Frederick Cassidy, M.D.⁴, William H. Wilson, Ph.D.⁴, and Johannes D. Veldhuis, M.D.^{5,*}

Acta Psychiatr Scand. 2012

Conclusions 2

Pituitary Unit U.O. C Endocrinologia University of Padua

Prof.ssa Carla Scaroni Mattia Barbot Fillipo Ceccato Marialuisa Zilio Andrea Daniele Daniela Regazzo Denis Ciato Gianluca Occhi

Prof Marco Boscaro

Paola de Lazzari Sergio Ferasin