VIAGGIO ALLA (RI)SCOPERTA DELLA SINDROME DI CUSHING

ALTOGETHER TO BEAT CUSHING'S SYNDROME

Napoli, 10 aprile 2017

FERDINANDO CARANCI

RUOLO DELL' IMAGING

Dipartimento di Scienze per la Salute

Facoltà di Medicina e Chirurgia

Università del Molise

REGIONE SELLARE

"… la Risonanza Magnetica riassume tutte le indicazioni per lo studio morfologico della regione sellare …
… la Tomografia Computerizzata deve essere riservata in seconda istanza a casi selezionati …"

Bonneville JF et Al: *Magnetic Resonance Imaging of the pituitary area*. **Riv Neuroradiol** 13 (Suppl 1): 91-100, 2000.

ANATOMIA NEURORADIOLOGICA

STUDIO NEURORADIOLOGICO

✓ strato sottile (2-3 mm)

- ✓ piano sagittale (logge cavernose)
- ✓ piano coronale (peduncolo ipofisario)
- ✓ piano assiale (pavimento sellare)

- ✓ piano sagittale (margini laterali della lesione)
- ✓ piano coronale (margine ant. post. della lesione)
- ✓ piano assiale (margine caudale craniale della lesione)

RAPPORTI CON IL CHIASMA

RAPPORTI CON IL SENO CAVERNOSO

✓ area focale di alterato segnale

lesione intraghiandolare < 10 mm

✓ area focale di alterata impregnazione

 T_2

MICROADENOMA IPOFISARIO

Hagiwara A et Al: Comparison of GH- and non GH-producing adenomas: imaging characteristics and pathologic correlation. Radiology 228: 533-538, 2003.

✓ area focale di alterato segnale

lesione intraghiandolare < 10 mm

✓ area focale di alterata impregnazione

convessità superiore
 erosione pavimento
 deviazione peduncolo

Bartynski WS, et Al: *The effect of MR contrast medium dose on pituitary gland enhancement, microlesion enhancement and pituitary gland-to-lesion contrast conspicuity.* **Neuroradiology** 48 449-459, 2006.

TR/ TE 422/26 ms **FOV** 15.8 · 18.0 cm

TR/TE 400/10 ms **FOV** 12 · 12 cm

"Not all T1-weighted SE scans are equally accurate ... MRI technique, particularly FOV and TR/TE value, influences results ..."

> Iffat N. Chowdhury A change in pituitary magnetic resonance imaging protocol detects ACTH-secreting tumours in patients with previously negative results. Clinical Endocrinology (2010) 72, 502–506

SEQUENZA Spin-Echo 1.5T TR/TE: 400/9 msec FOV: 12 x 12 cm slice thickness: 3 mm

SEQUENZA VI-SGE 1.5T TR/TE: 10/3,3 msec FOV: 16 x 16 cm slice thickness: 1-2 mm

HIPOFISIS 8C-6 - DINAI

Sensitivity increases even beyond 3 mm if

performed with high magnetic fields

Ono E, Ozawa A, et al: *Diagnostic usefulness of 3 Tesla MRI of the brain for Cushing disease in a child.* Clinical Pediatric Endocrinology 2011; 20 (4), 89-93.

1. TR, TE, FOV

2. Campo magnetico elevato

3. Dose di Gadolinio

SENSIBILITA' 100 %

Lesly Portocarrero-Ortiz e A modified protocol using half-dose gadolinium in dynamic 3-Tesla magnetic resonance imaging for detection of ACTH-secreting pituitary tumors Pituitary (2010) 13:230–235

1. dimensioni (!!)

LIMITI TECNICI

2. dinamica di impregnazione

Kinoshita M, et Al. Pituitary-targeted Dynamic contrast-enhanced multisection CT for detecting MR Imaging–occult functional pituitary microadenoma. AJNR Am J Neuroradiol 2015; 36:904–08

"… ACTH-secreting adenomas showed the highest tumor/node ratio among the 3 hormones, indicating the least contrast between the adenoma and normal pituitary gland …"

TC DINAMICA

1. risoluzione temporale

2. imaging 3D senza gap

Kinoshita M, et Al. Pituitary-targeted Dynamic contrast-enhanced multisection CT for detecting MR Imaging–occult functional pituitary microadenoma. AJNR Am J Neuroradiol 2015; 36:904–08

DIAGNOSI DIFFERENZIALE

CISTI DELLA PARS INTERMEDIA

DIAGNOSI DIFFERENZIALE

CISTI DELLA TASCA DI RATHKE

✓ sede

✓ impregnazione (-)

DIAGNOSI DIFFERENZIALE

FOLLOW - UP

FOLLOW - UP

time.

PRE-ADRENALECTOMIA POST-ADRE

POST-ADRENALECTOMIA

Assie G, et al. Corticotroph tumor progression after adrenalectomy in Cushing's Disease: A reappraisal of Nelson's Syndrome. J Clin Endocrinol Metab 2007; 92 (1): 172-179

CONCLUSIONI

Vitale G, Tortora F, Caranci F, Pivonello R, Colao AM et Al. on behalf of the **A.B.C. Group**. Pituitary Magnetic Resonance Imaging in Cushing's disease. *Endocrine* 2017; 55: 691-696

CONCLUSIONI

Vitale G, Tortora F, Caranci F, Pivonello R, Colao AM et Al. on behalf of the **A.B.C. Group**. Pituitary Magnetic Resonance Imaging in Cushing's disease. *Endocrine* 2017; 55: 691-696