

### CHIRURGIA DEL MICRO E MACROADENOMA: EFFICACIA E COMPLICANZE Paolo Marzullo

Napoli, 10-12 Aprile 2017 Centro Congressi Federico II - Via Partenope, 36 Treatment of Cushing's Syndrome: An Endocrine Society Clinical Practice Guideline

Lynnette K. Nieman, Beverly M. K. Biller, James W. Findling, M. Hassan Murad, John Newell-Price, Martin O. Savage, and Antoine Tabarin

J Clin Endocrinol Metab, August 2015

#### Predictors of surgical success

Diagnostic tools

Surgeon skills

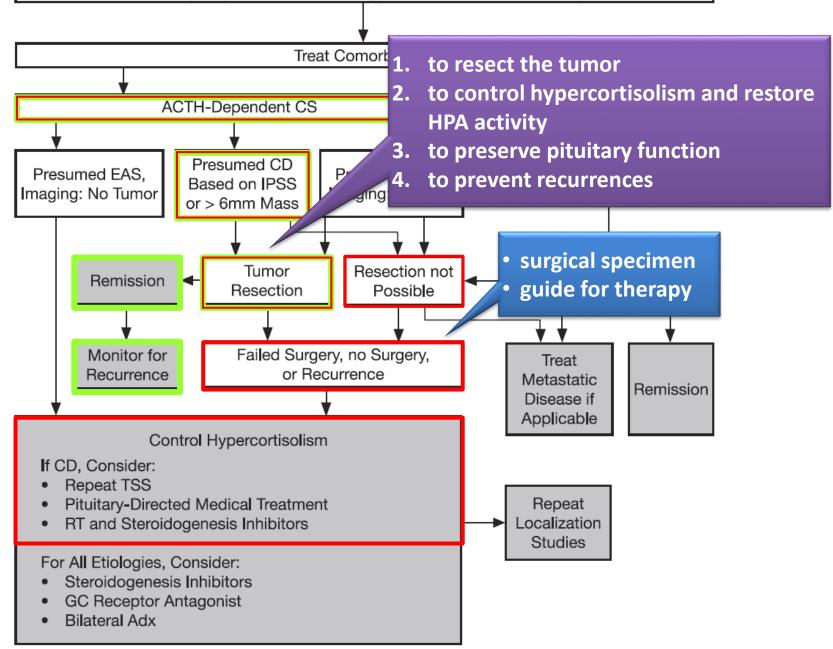
Tumor visualization

Positive histology

**Remission criteria** 

Length of follow-up

Recurrences


3.1 We recommend initial resection of primary lesion(s) underlying Cushing's disease (CD), ectopic and adrenal (cancer, adenoma, and bilateral disease) etiologies, unless surgery is not possible or is unlikely to significantly reduce glucocorticoid excess (Figure 1).  $(1|\oplus\oplus\oplus\oplus)$ 

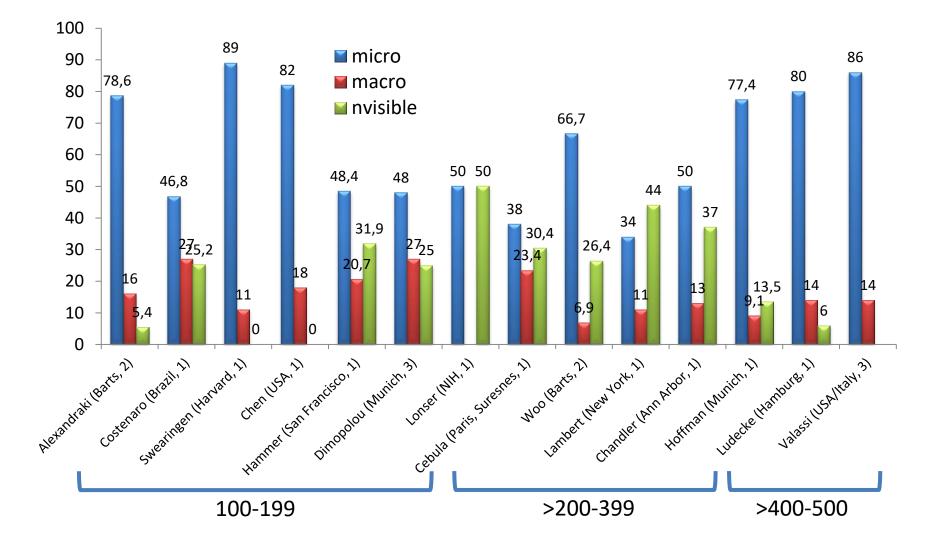
3.1c We recommend transsphenoidal selective adenomectomy (TSS) by an experienced pituitary surgeon as the optimal treatment for CD in pediatric and adult patients.  $(1|\oplus\oplus\oplus\oplus)$ 

3.1ci We recommend measuring serum sodium several times during the first 5–14 days after transsphenoidal surgery.  $(1|\bigoplus \bigcirc \bigcirc \bigcirc)$ 

3.1cii We recommend assessing free  $T_4$  and prolactin within 1–2 weeks of surgery, to evaluate for overt hypopituitarism. (1) $\oplus\oplus$ OO)

3.1ciii We recommend obtaining a postoperative pituitary magnetic resonance imaging (MRI) scan within 1–3 months of successful TSS. (Ungraded best practice statement) Cushing's Syndrome and Etiology Established Biochemically




 Patients with Cushing's disease generally present with hypercortisolemia symptoms due to ACTH hypersecretion from the adenoma.

 Rather, symptoms attributable to pituitary adenoma size, such as headache or optic chiasm compression, are rare.

### CD tumors are different compared to other pituitary tumors

In contrast to other functioning microadenomas, the tumors in CD are not round and well circumscribed; they are frequently binodular with small connections, sometimes of a diffuse growing pattern, and they are not always enclosed. Even if most adenomas are deliquescent, some of them present with a firm consistency and therefore can easily be misinterpreted as normal pituitary tissue.

### ACTH-sec. micro- and macroadenomas at MRI (surveys on >100 cases)



#### **Preoperative adenoma finding rates by MRI**

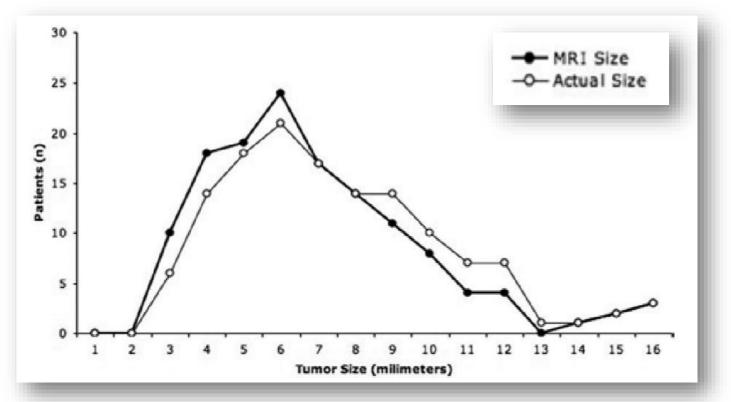
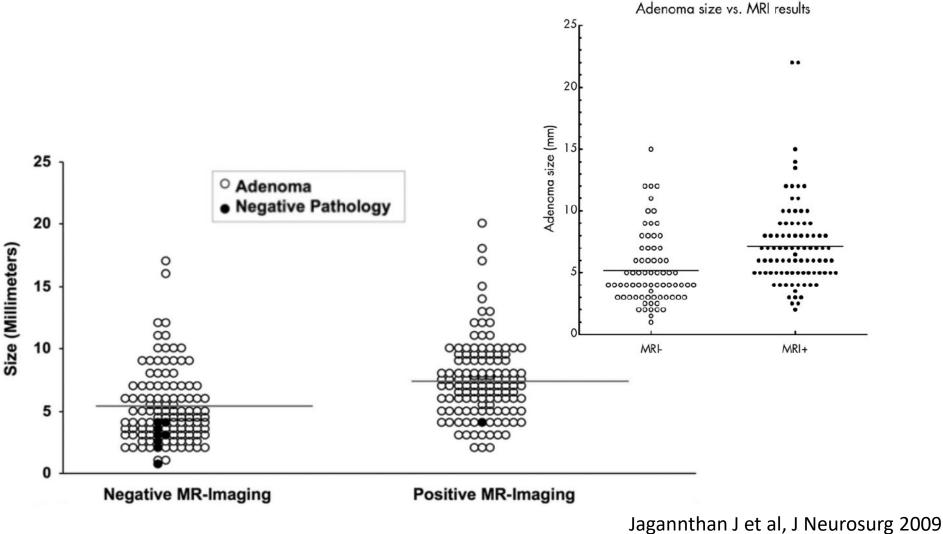

| Authors               | Center               | Year | No. of patients     | Correct adenoma identification |
|-----------------------|----------------------|------|---------------------|--------------------------------|
| Buchfelder et al. [3] | Erlangen, FRG        | 1993 | 41 (microadenomas)  | 21/41 (52%)                    |
| Magiakou et al. [35]  | Bethesda, USA        | 1994 | 50 (children)       | 26/50 (52%)                    |
| Ram et al. [37]       | Bethesda, USA        | 1995 | 18 (microadenomas)  | 8/18 (44%)                     |
| Knappe et al. [39]    | Hamburg, FRG         | 1995 | 42 (children)       | 25/42 (59%)                    |
| Devoe et al. [40]     | San Francisco, USA   | 1997 | 18 (children)       | 13/18 (72%)                    |
| Barrou et al. [41]    | Paris, France        | 1997 | 54 (unselected)     | 42/54 (78%)                    |
| Watson et al. [42]    | Bethesda, USA        | 1998 | 107 (microadenomas) | 39/107 (36%)                   |
| Graham et al. [32]    | Portland, USA        | 1999 | 58 (microadenomas)  | 29/58 (55%)                    |
| Kaltsas et al. [43]   | London, GB           | 1999 | 69 (unselected)     | 50/69 (72%)                    |
| Semple et al. [44]    | Charlottesville, USA | 1999 | 105 (unselected)    | 87/105 (83%)                   |
| Kurosaki et al. [38]  | Hamburg, FRG         | 2000 | 51 (microadenomas)  | 19/51 (37%)                    |

Table 1. Cushing's disease - preoperative adenoma finding rate by MR imaging in the literature (1993-2000)

Preoperative adenoma identification on MR imaging is associated with 18-fold higher odds of finding the adenoma at surgery and 4fold higher chance of postresection biochemical remission

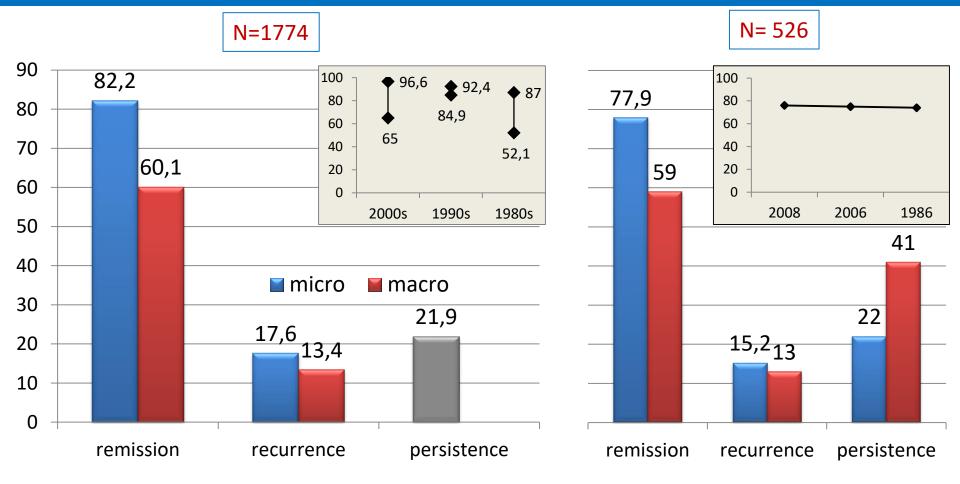
Ludecke DK et al, J Neuro-Oncol 2001 Lonser RR et al, J Neurosurg 2017


# MRI measurement within 2 mm of the tumor size at surgery in most cases



There is an overall tendency to underestimate tumor size on MRI, probably related to the resection of the pseudocapsule.

Jagannathan J et al, J Neurosurg 2009


# Size of adenomas at surgery in adult and pediatric patients with positive/negative MRI



Lonser RR et al, JCEM 2013



## Remission rate is lower in macroadenoma than microadenoma



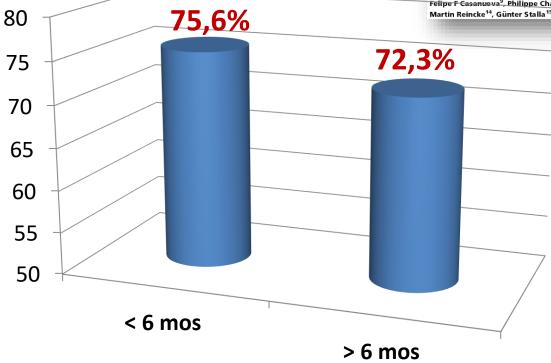
Petersenn S et al, Eur J Endocrinol 2015

Hoffman BM et al, J Neurosurg 2008

#### Surgical experience and Cushing's disease

In general, in a single neurosurgeon's series, a continuous improvement in normalization of the hypersecretory status for prolactin<sup>50</sup> and human growth hormone-producing<sup>51</sup> adenomas as well as a decrease of pituitary insufficiency following surgical treatment of nonfunctioning tumors<sup>52</sup> could be experienced and has been documented. On the contrary, during surgical treatment of pituitary-dependent CD, we did not observe this phenomenon.

Hoffman BM et al, J Neurosurg 2008


## The predictive role for early remission vs late remission on definitive outcome

#### **Cumulative remission data**

#### THERAPY OF ENDOCRINE DISEASE

Outcomes in patients with Cushing's disease undergoing transsphenoidal surgery: systematic review assessing criteria used to define remission and recurrence

Stephan Petersenn, Albert Beckers<sup>1</sup>, Diego Ferone<sup>2</sup>, Aart van der Lely<sup>3</sup>, Jens Bollerslev<sup>4</sup>, Marco Boscaro<sup>5</sup>, Thierry Brue<sup>6,7</sup>, Paolo Bruzzi<sup>8</sup>, Feilpe F-Casanueva<sup>9</sup>, Philippe Chanson<sup>10,11,12</sup>, Annamaria Colao<sup>13</sup>, Martin Reincke<sup>14</sup>, Günter Stalla<sup>15</sup> and Stelios Tsagarakis<sup>16</sup>

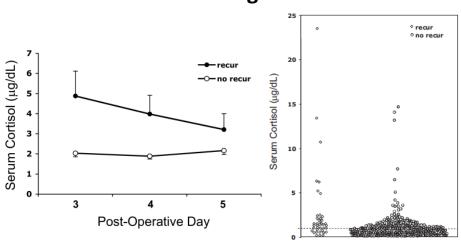


## Remission and recurrence after surgical tumor resection

4.1 We suggest an individualized management approach based on whether the postoperative serum cortisol values categorize the patient's condition as hypocortiso-lism, hypercortisolism, or eucortisolism. (Ungraded best practice statement)

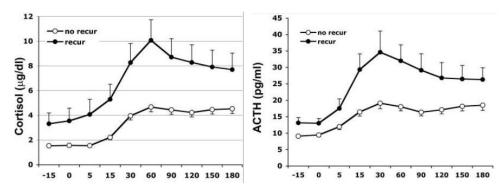
4.2 We recommend additional treatments in patients with persistent overt hypercortisolism.  $(1 \oplus \oplus \oplus \oplus)$ 

4.3 We recommend measuring late-night salivary or serum cortisol in patients with eucortisolism after TSS, including those cases where eucortisolism was established by medical treatment before surgery.  $(1|\oplus\oplus))$ 


4.4 We recommend using tests to screen for hypercortisolism to assess for recurrence in patients with ACTH-dependent CS.  $(1|\bigoplus \bigoplus \bigoplus \bigcirc)$ 

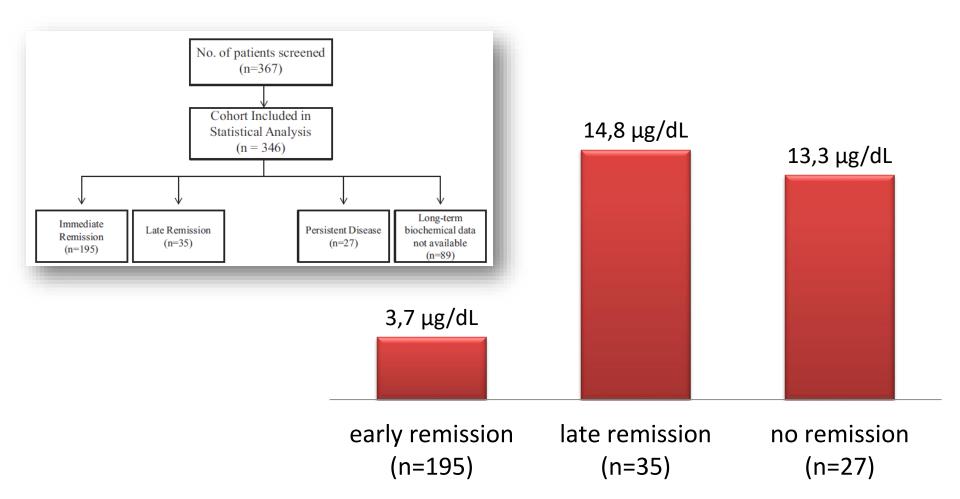
### How to assess long-term remission of CD after TTS

- Non-provocative tests:
  - morning cortisol on Day 1-3 or day 5-10 (cutoff <5, <2, <1 mcg/L);</p>
  - Late night serum cortisol;
  - Late night salivary cortisol;
  - ACTH (<5 pg/mL);</pre>
  - UFC (<20 mcg/24 h)</p>
- **Provocative tests**:
  - overnight LDDST and CRH test.


# Early postoperative predictors of sustained remission (N=418)

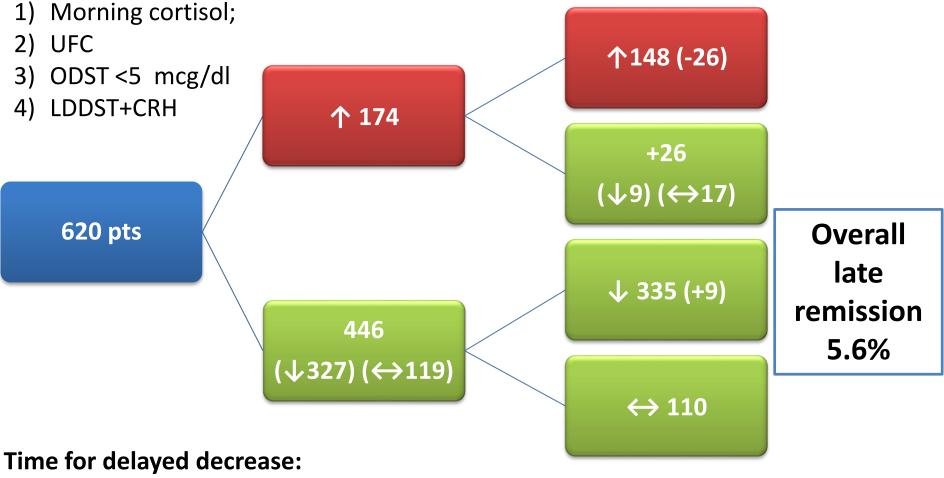
- Cortisol <5 µg/dl predicts remission
- Cortisol <1-2 µg/dl is highly predictive for sustained remission
- Fewer patients achieved a cortisol nadir <2 μg/dl (87%) than <5 μg/dl (98%)
- Recurrence rates were similar if:
  - $<1 \,\mu g/dl: 7.5\%$
  - <2 μg/dl: 9.5%
  - <5 μg/dl: 10.4%




#### **Morning cortisol**





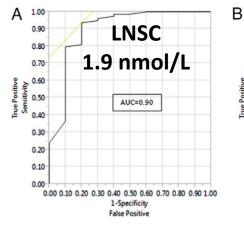

Lindsay JR et al, J Clin Endocrinol Metab 2011

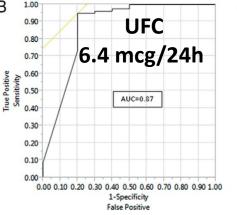
# Late surgical remission, defined by cortisol concentrations <5 µg/dL (N=346)

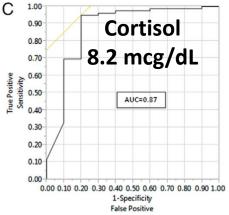


#### **Delayed remission after TSS in CD patients**

#### Criteria for recurrence, 2 among:

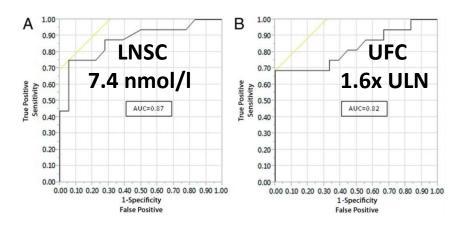




median 9 d; range 4–180 d


Valassi E et al, Clin Endocrinol Metab 2010

# Late-night salivary cortisol for remission and recurrence in Cushing's disease (N=224)

#### <3 mos remission








Remission in 89% of 89 pts with LNSC data

#### >12 mos recurrence



Amlashi FG et al J Clin Endocrinol Metab. 2015

Remission with LNSC:

94% sensitivity; 80% specificity

**Remission with UFC or cortisol**:

95% sensitivity; 80% specificity

**Recurrence with LNSC:** 

75% sensitivity and 95% specificity

### **Recurrence with UFC:** 68% sensitivity; 100% specificity

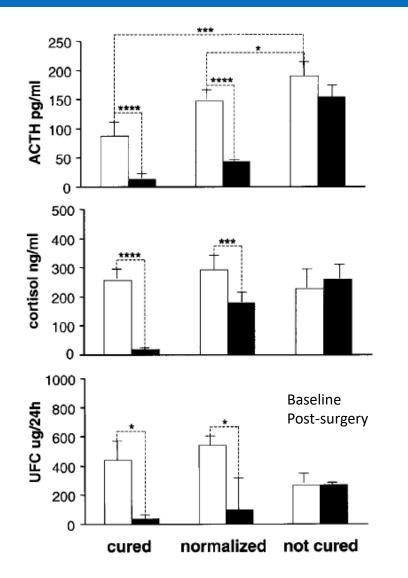
## Factors influencing incomplete tumor removal

Removal of incidental adenomas rather than the corticotroph tumor(s)

Mistakenly assuming an adenoma was found, resulting in the removal of a site that appears abnormal at surgery, but that proves to be normal gland on histological inspection;

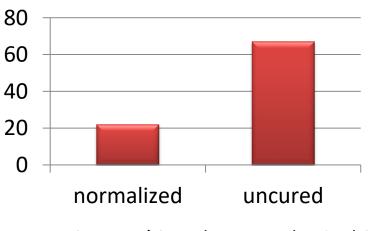
Incomplete removal of an ACTH-secreting adenoma contained within the pituitary;

Invasive ACTH-secreting adenoma that was not recognized or incompletely removed at surgery can result in lack of biochemical remission


R. R. Lonser, L. Nieman, and E. H. Oldfield. J Neurosurg 2017

## Macroadenoma as one end of a spectrum of tumor autonomy



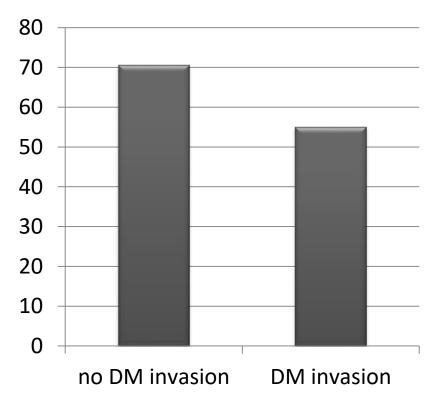

"These tumors have a distinct profile compared with microadenomas"

# Surgical outcome of macroadenomas is related to hormones and anatomy



"...reduced ACTH bioactivity, impaired sensitivity to CRH, insensitivity to dexamethasone, growth and invasiveness of the tumor could be an index of a low degree of differentiation and could explain a poor prognosis".

### Cavernous sinus invasion



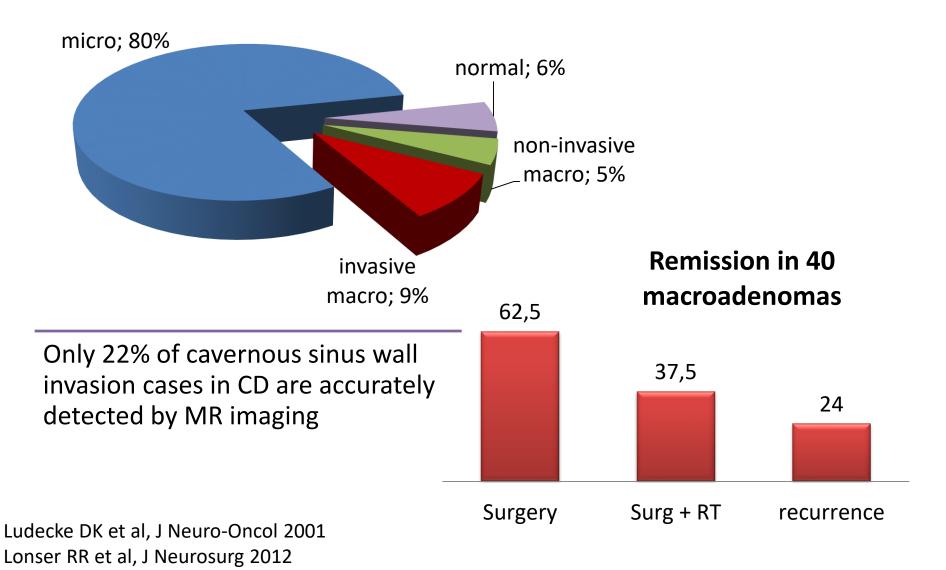

Cannavo' S et al. Eur J Endocrinol 2003

# Residual tumor is a highly possible reason for relapses

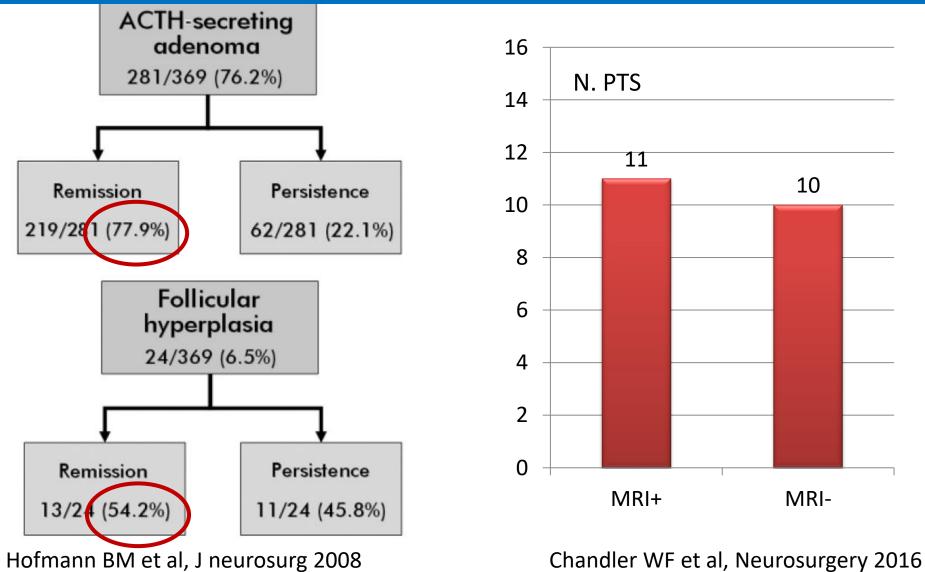
 Most relapses can be attributable to microscopic residual left at the adenoma margin or unrecognized microscopic dural invasion along the wall of the cavernous sinus (initially unrecognized.

### Remission in macroadenomas

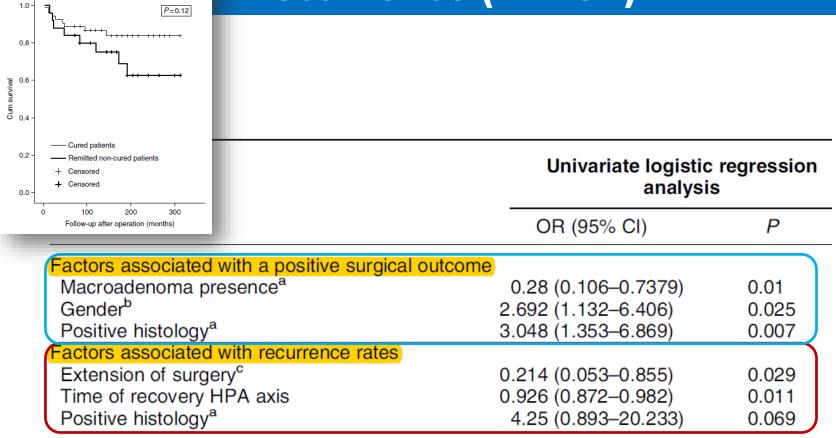



De Tommasi C et al J Neurosurg 2005

### Tumor grade: relationship of adenoma to sella and sphenoid sinuses (n=289)


| Grade     | Invasion           | n   | Initial remission<br>no. (%) | Persistent<br>disease no. (%) |
|-----------|--------------------|-----|------------------------------|-------------------------------|
| Grade I   | Micro, IS          | 140 | 121 (86)                     | 19 (14)                       |
| Grade II  | Macro, IS          | 52  | 43 (83)                      | 9 (17)                        |
| Grade III | Sellar perforation | 8   | 5 (63)                       | 3 (38)                        |
| Grade IV  | Sellar destruction | 0   | 0                            | 0                             |
| Grade V   | Metastases         | 0   | 0                            | 0                             |

Hammer G et al, J Clin endocrinol Metab 2004

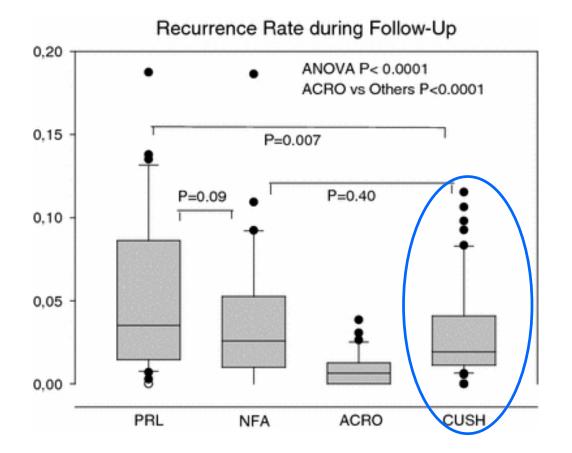

### Distribution (%) of ACTH-secreting adenomas by size and invasion criteria (N=472)



### **Correlation of surgical results with histopathological findings (N=369)**



## Free of recurrence survival recurrence (N=131)




<sup>a</sup>Yes, 1 and no, 0.

<sup>b</sup>Female, 1 and male, 0.

<sup>c</sup>1, Adenomectomy; 2, hemi–hypophysectomy and 3, total hypophysectomy.

## Recurrence rate in patients treated by TTS: the atypical behavior of ACTH-sec. adenomas



Roefsema F et al, Pituitary 2012

# Recurrence rate is not significantly influenced by the type of postsurgical assessment

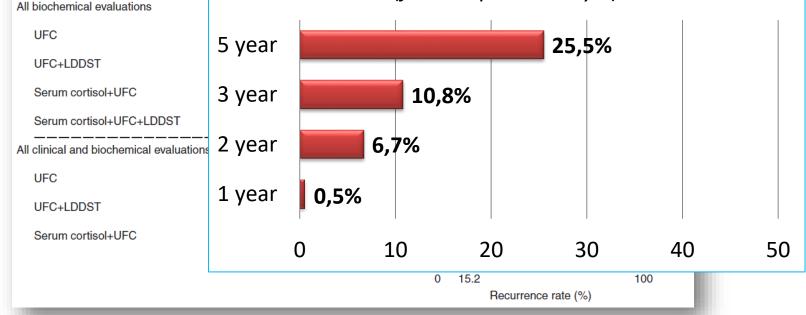
#### THERAPY OF ENDOCRINE DISEASE

Outcomes in patients with Cushing's disease undergoing transsphenoidal surgery: systematic review assessing criteria used to define remission and recurrence

Stephan Petersenn, Albert Beckers<sup>1</sup>, Diego Ferone<sup>2</sup>, Aart van der Lely<sup>3</sup>, Jens Bollerslev<sup>4</sup>, Marco Boscaro<sup>2</sup>, Thierry Brue<sup>6,7</sup>, Paolo Bruzzi<sup>6</sup>, Felipe F Casanueva<sup>9</sup>, Philippe Chanson<sup>10,11,12</sup>, Annamaria Colao<sup>13</sup>, Martin Reincke<sup>14</sup>, Günter Stalla<sup>15</sup> and Stelios Tsagarakis<sup>16</sup>

Any evaluation type

Late Recurrences of Cushing's Disease after Initial Successful Transsphenoidal Surgery


<u>Chirag G. Patil, Daniel M. Prevedello</u>, Shivanand P. Lad, Mary Lee Vance, <u>Michael O. Thorner</u>, <u>Laurence Katznelson</u>, and <u>Edward R. Laws</u>, Jr.

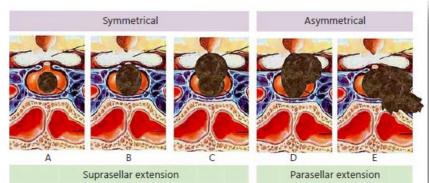
Number Total number Patients with

Mean rate (95% CI)

#### **Recurrence data in 215 microadenomas (UFC)**

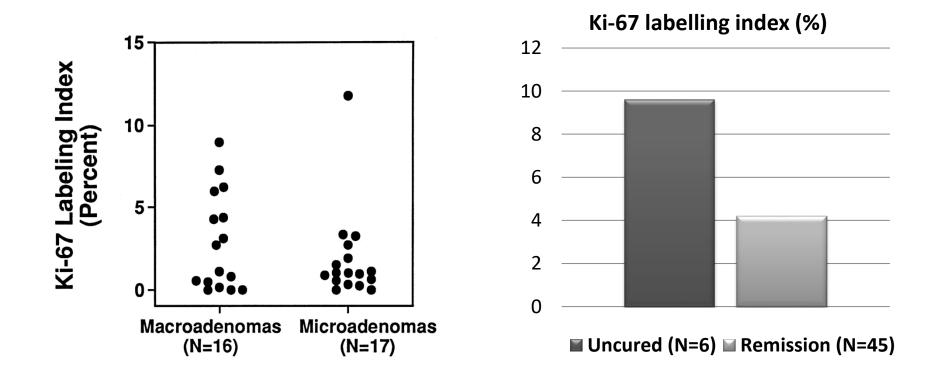
(follow-up 0.5-13.8 yrs)




### Long-term remission and recurrence rates after first and second TTS for CD (N=120)

Recurrence rate afte successful second TSS was 40% Microadenoma n 90 (40% of micro, 75% of macro 2 85 and 17% of no visible 13/280 41 adenom time to recurrence 75 Patients in remission 70 rence after п Time to 65 1st TSS 60 SSwas shorter than second 3/4 55 after finstantific to recurrence 35 15  $\pm$  s.p. (months) 2nd TSS 10 Neithempostoperative n 5 hypoconts solisms not its longer 25 50 75 100 125 150 175 200 225 duration prevented patients Time in months after TSS from disease recurrence.

Dimopoulou C et al, Eur J Endocrinol 2014


#### **Aggressive Pituitary Tumors**

Eleftherios Chatzellis Krystallenia I. Alexandraki Ioannis I. Androulakis Gregory Kaltsas



| Histological                                                           | Novel biological markers                                                       |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Histological subtype                                                   | Genomic imbalance (11q allelic loss)                                           |
| Crooke's cell adenomas                                                 | DNA aneuploidy                                                                 |
| Sparsely granulated somatotroph adenomas                               | MYO5A                                                                          |
| Densely granulated lactotroph adenomas<br>Acidophil stem cell adenomas | Germline mutations associated with MEN1, MEN4,<br>Carney complex, FIPA and SDH |
| Thyrotroph adenomas                                                    | Micro-RNAs                                                                     |
| Sparsely granulated corticotroph adenomas                              | p27                                                                            |
| Silent subtype 3 adenomas                                              | Senescence markers (p16, p21, β-galactosidase)                                 |
| Null cell adenomas                                                     | PTTG                                                                           |
| Ki67 LI                                                                | HEPN-1                                                                         |
| p53                                                                    | Growth factors (EGF, VEGF) and their receptors (EGFR, VEGFR)                   |
| Multimodal classification system                                       | FGF-2 and ptd-FGFR4                                                            |
| (invasion, proliferation markers)                                      | MMPs                                                                           |
|                                                                        | NCAM                                                                           |
|                                                                        | Galectin-3                                                                     |

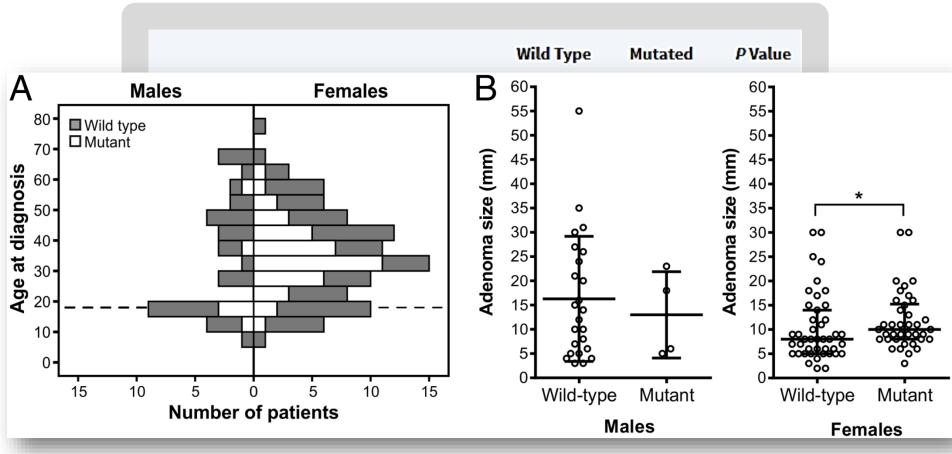
### Degree of proliferative activity differs between micro- and macroadenomas in CD



Katznelson L et al. J Clin Endocrinol Metab 1998

Losa M et al. Am J Pathol 2000

Minichromosome maintenance 7 (MCM7), a marker of aggressiveness


| Variables     | n  | MCM7 LI <sup>a</sup>     | P    |
|---------------|----|--------------------------|------|
| Age           |    |                          |      |
| $\leq 40$     | 48 | 16.54 <sup>c</sup> ±2.08 |      |
| >40           | 49 | 13.51±2.06               | 0.1  |
| Sex           |    |                          |      |
| Female        | 59 | 15.57 <u>+</u> 1.89      |      |
| Male          | 38 | 14.13±2.35               | 0.04 |
| Dimension     |    |                          |      |
| Microadenoma  | 23 | 16.04±3.03               |      |
| Macroadenoma  | 74 | 14.69±1.69               | 0.7  |
| Hormonal type |    |                          |      |
| LH–FSH        | 10 | 10.70 <u>+</u> 4.40      |      |
| ACTH          | 23 | 22.61±2.90               |      |
| GH            | 12 | 18.01±4.02               |      |
| PRL           | 29 | 12.69 <u>+</u> 2.58      |      |
| Non-secreting | 23 | $10.65 \pm 2.90$         | 0.04 |

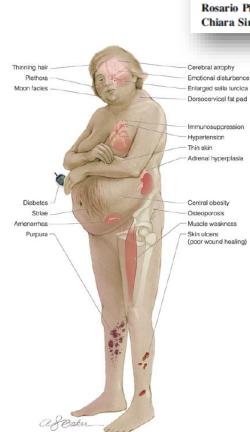
#### MCM7 LI

|                  | Non-invasive               | Invasive              | P <sup>a</sup> |
|------------------|----------------------------|-----------------------|----------------|
| ACTH             | 14.8±2.8 (17) <sup>b</sup> | 44.8±4.8 (6)          | 0.0023         |
| GH               | 11.2±6.1 (8)               | 31.7 <u>+</u> 8.7 (4) | 0.23           |
| NSA <sup>c</sup> | 8.6±3.6 (9)                | 12.0±2.9 (14)         | 0.34           |
| PRL              | 13.4±2.3 (20)              | 11.0±3.5 (9)          | 0.30           |
| FSH/LH           | 8.3±7.1 (3)                | 11.7±4.6 (7)          | 0.90           |

Coli A, et al. Eur J Endocrinol 2016

### Mutations in ubiquitin-specific protease (UBS)-8 gene in patients with CD




Reincke M et al , Nat Genet 2015 Perez-Rivas LG et al, J Clin Endocrinol Metab 2015

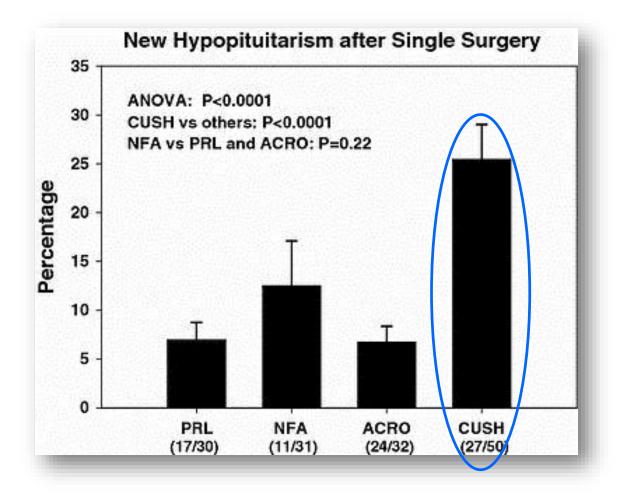
### Clinical outcomes of surgery for ACTH-sec pituitary adenoma

#### Predictors of Mortality and Long-term Outcomes in Treated Cushing's Disease: A Study of 346 Patients

Jessica K. Lambert, Levana Goldberg, Sofia Fayngold, Jane Kostadinov, Kalmon D. Post, and Eliza B. Geer

| Characteristic                                                                        | Total Cohort<br>(n = 346) |
|---------------------------------------------------------------------------------------|---------------------------|
| Age at diagnosis, y <sup>a</sup>                                                      | 39.9 (7–77)               |
| Female:male <sup>b</sup>                                                              | 265:81 (77%)              |
| Duration of follow-up <sup>a</sup>                                                    | 6.3 y (1 mo to 30 y)      |
| Duration of GC exposure, mo <sup>c,d</sup>                                            | 40 (2 mo to 20 y)         |
| Comorbidittes                                                                         |                           |
| Hypertension                                                                          | 248 (72%)                 |
| Diabetes                                                                              | 95 (27%)                  |
| Depression                                                                            | 76 (22%)                  |
| Psychosis                                                                             | 6 (2%)                    |
| Osteoporosis                                                                          | 67 (19%)                  |
| Coronary artery disease                                                               | 14 (4%)                   |
| Serebrovascular accident                                                              | 4 (196)                   |
| Dyslipidemia                                                                          | 55 (16%)                  |
| MRI findings <sup>b,e</sup>                                                           |                           |
| Microadenoma                                                                          | 117 (34%)                 |
| Macroadenoma                                                                          | 39 (11%)                  |
| No visible adenoma                                                                    | 87 (25%)                  |
| Inhomogeneous pituitary <sup>f</sup>                                                  | 67 (19%)                  |
| BIPSS <sup>b</sup>                                                                    | 160 (46%)                 |
| Preoperative ACTH, pg/mL <sup>a</sup>                                                 | 84.2 (8-1000)             |
| Preoperative UFC, $\mu g/24 h^{c}$                                                    | 269.5 (18.1-8097)         |
| Preoperative hemoglobin A1c <sup>b,g</sup>                                            | 7.9 (4.6–19.6)            |
| Preoperative systolic BP, mm Hg <sup>b,h</sup>                                        | 146 (96–220)              |
| Preoperative diastolic BP,                                                            | 89 (53–150)               |
| mm Hg <sup>b,h</sup>                                                                  |                           |
| Preoperative BMI, kg/m <sup>2b,i</sup>                                                | 31.5 (17–51.6)            |
| Preoperative low-density                                                              | 130.8 (60–352)            |
| lipoprotein, mg/dL <sup>b,j</sup><br>Preoperative triglycerides, mg/dL <sup>b,k</sup> | 167 (40–1243)             |




#### Endocrine DOI 10.1007/s12020-016-0984-8

REVIEW

#### Cushing's disease: the burden of illness

Rosario Pivonello<sup>1</sup> · Maria Cristina De Martino<sup>1</sup> · Monica De Leo<sup>1</sup> · Chiara Simeoli<sup>1</sup> · Annamaria Colao<sup>1</sup>

# The incidence of new hypopituitarism after single TTS is increased in ACTH-sec. tumors



Roefsema F et al, Pituitary 2012

### **Complications of microsurgery for ACTH-sec** pituitary adenomas

#### THERAPY OF ENDOCRINE DISEASE **Outcomes in patients with Cushing's disease** undergoing transsphenoidal surgery: systematic review assessing criteria used to define remission and recurrence Stephan Petersenn, Albert Beckers<sup>1</sup>, Diego Ferone<sup>2</sup>, Aart van der Lely<sup>3</sup>, Jens Bollerslev<sup>4</sup>, Marco Boscaro<sup>5</sup>, Thierry Brue<sup>6,7</sup>, Paolo Bruzzi<sup>8</sup>, Felipe F Casanueva<sup>9</sup>, Philippe Chanson<sup>10,11,12</sup>, Annamaria Colao<sup>13</sup>, Martin Reincke<sup>14</sup>, Günter Stalla<sup>15</sup> and Stelios Tsagarakis<sup>16</sup> 9,4 % 4,5 1,9 diabetes **CSF** leakage meningitis CV complications

insipidus

| Correlation with surgical experience | r     | р      |
|--------------------------------------|-------|--------|
| Hypopit                              | -0.29 | ns     |
| Diabetes insipidus                   | -0.54 | <0.05  |
| CSF leak                             | -0.74 | <0.001 |
| Meningitis                           | -0.54 | <0.05  |
| CV complications                     | -0.51 | ns     |

1,2

Long-term results after microsurgery for Cushing disease: experience with 426 primary operations over 35 years

BERND MARKUS HOFMANN, M.D.,<sup>1</sup> MICHAL HLAVAC, M.D.,<sup>1</sup> RAMON MARTINEZ, M.D.,<sup>1</sup> MICHAEL BUCHFELDER, M.D., PH.D.,<sup>1</sup> OTTO ALBRECHT MÜLLER, M.D., PH.D.,<sup>2</sup> AND RUDOLF FAHLBUSCH, M.D., PH.D.<sup>1</sup>

| Overall complications                                                | 5.9% (25/426)                                                                                 |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Mortality                                                            | 3 (0.7%) including:<br>1: overweight, ARDS,<br>1: meningitis<br>1: stress-induced GI bleeding |
| Mesenteric infarction                                                | 2 (0.4%)                                                                                      |
| Rhinorrhea requiring operation                                       | 2 (0.5%)                                                                                      |
| Meningitis                                                           | 3 (0.7%)                                                                                      |
| Transient oculomotor nerve palsy                                     | 1 (0.2%)                                                                                      |
| Additional insufficiencies of >1<br>anterior pituitary lobe hormones | 4 (0.9%)                                                                                      |
| Diabetes insipidus                                                   | 4 (0.9%)                                                                                      |
| Deep venous thrombosis                                               | 8 (1.8%)                                                                                      |

### Complications differ in MRI+ and MRI-ACTH-sec. tumors (N=230)

| Postoperative complications                  | Total $n = (\%)$<br>230 | Positive MRI $n = 160$ | (%) Negative MRI $n = (\%)$<br>70 |
|----------------------------------------------|-------------------------|------------------------|-----------------------------------|
| CSF leakage                                  |                         |                        |                                   |
| CSF leakage intraoperatively                 | 29 (12.6)               | 22 (13.7)              | 7 (10)                            |
| CSF leakage postoperatively                  | 0 (0)                   | 0 (0)                  | 0 (0)                             |
| Endocrinology disorders                      |                         |                        |                                   |
| Transient diabetes insipidus                 | 51 (22)                 | 27 (16.8)              | 24 (34.2)                         |
| Long-term diabetes insipidus                 | 15 (6.4)                | 8 (5)                  | 7 (10)                            |
| Partial anterior pituitary<br>insufficiency  | 4 (1.8)                 | 1 (0.6)                | 3 (4.3)                           |
| Complete anterior pituitary<br>insufficiency | 3 (1.4)                 | 3 (1.9)                | 0 (0)                             |
| SIADH                                        | 8 (3.4)                 | 4 (2.5)                | 4 (5.7)                           |
| Visual complications                         | 2 (0.8)                 | 0 (0)                  | 2 (2.8)                           |
| Other                                        |                         |                        |                                   |
| Vascular injury                              | 0 (0)                   | 0 (0)                  | 0 (0)                             |
| Epistaxis                                    | 6 (2.6)                 | 5 (3.1)                | 1 (1.4)                           |
| Deep venous thrombosis                       | 3 (1.3)                 | 2 (1.25)               | 1 (1.42)                          |
| Pulmonary emboli                             | 1 (0.4)                 | 0 (0)                  | 1 (1.42)                          |
| Meningitis                                   | 0 (0)                   | 0 (0)                  | 0 (0)                             |

#### Cebula H et al, Acta Neurochir 2017

#### **Risk of complications from repeat TSS**

In case of tumor remnant, the first step is a thorough re-exploration of the original resection site.

The higher incidence of postop complications after repeat TTS is the more aggressive approach, i.e. hemihypophysectomy and total hypophysectomy.

Postoperative panhypopituitarism are as high as 45% after hypophysectomy and 0–5% after repeat selective adenomectomy. Selective adenomectomy vs. subtotal hypophysectomy\*

| Procedure & Outcome                  | No. of<br>Cases |
|--------------------------------------|-----------------|
| selective adenomectomy               | 20              |
| in remission                         | 19              |
| hypopituitarism                      | 1               |
| subtotal or total hypophysectomy     | 12              |
| in remission                         | 5               |
| hypopituitarism                      | 6               |
| no tissue in sella at repeat surgery | 1               |
| in remission                         | 0               |
| hypopituitarism                      | 1               |

Friedman RB et al, J Neurosurg 1989 Benveniste RJ et al, J Neurosur 2005 Geer EB, Pituitary 2014

#### Conclusions

Trans-sphenoidal surgery is an effective, definitive treatment for Cushing's disease.

There are differences between MRI+ or MRI- micro and macroadenomas in terms of outcome and relapse.

Molecular factors could play a role in invasiveness and relapse.

Not all patients achieve remission, some experience relapse after variable time from *apparent* remission.

Remission criteria require disambiguity (*loose link* between tumor surgery, rate of remission and risk of relapse).

