

Altogether to Beat Cushing's Syndrome

ABC 2017

PROGRAMMA

10:30-11:30 **SIMPOSIO 4**

LA GUARIGIONE DALLA SINDROME DI CUSHING: EFFETTO SU

COMPOSIZIONE CORPOREA E METABOLISMO

Moderatori: Renato Pasquali, Carla Giordano

10:30-10:45 OBESITA' VISCERALE E COMPOSIZIONE CORPOREA

Nora Albiger

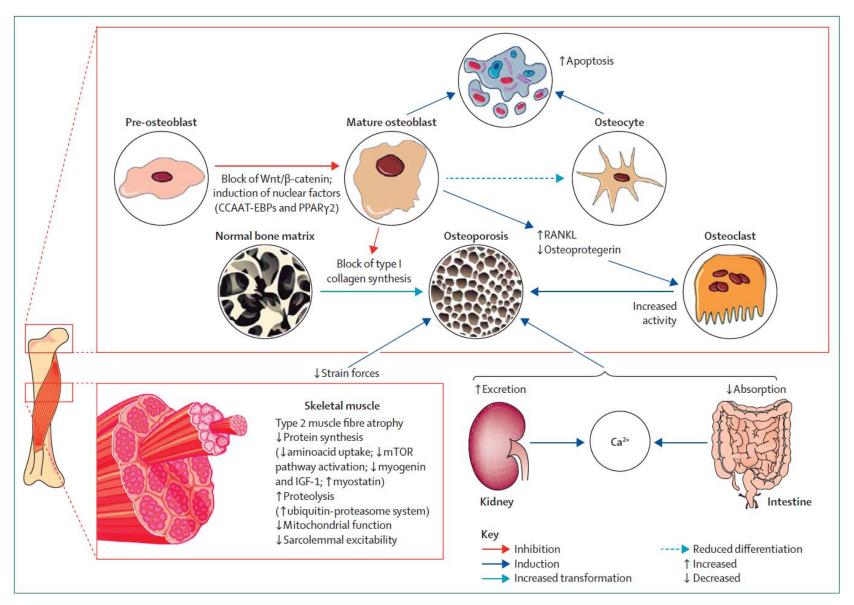
10:45-11:00 IL METABOLISMO GLICIDICO E LIPIDICO

Roberta Giordano

11:00-11:15 IL METABOLISMO PROTEICO, IL MUSCOLO E L'OSSO

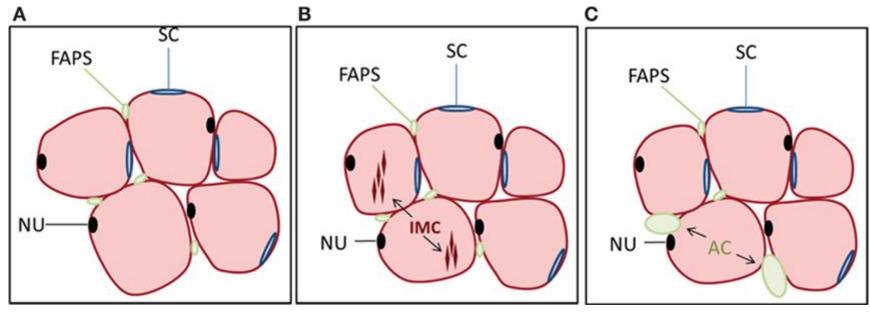
Iacopo Chiodini

11:15-11:30 Discussione


DISCLOSURES

Dichiaro di aver ricevuto negli ultimi due anni compensi o finanziamenti dalle seguenti Aziende Farmaceutiche e/o Diagnostiche:

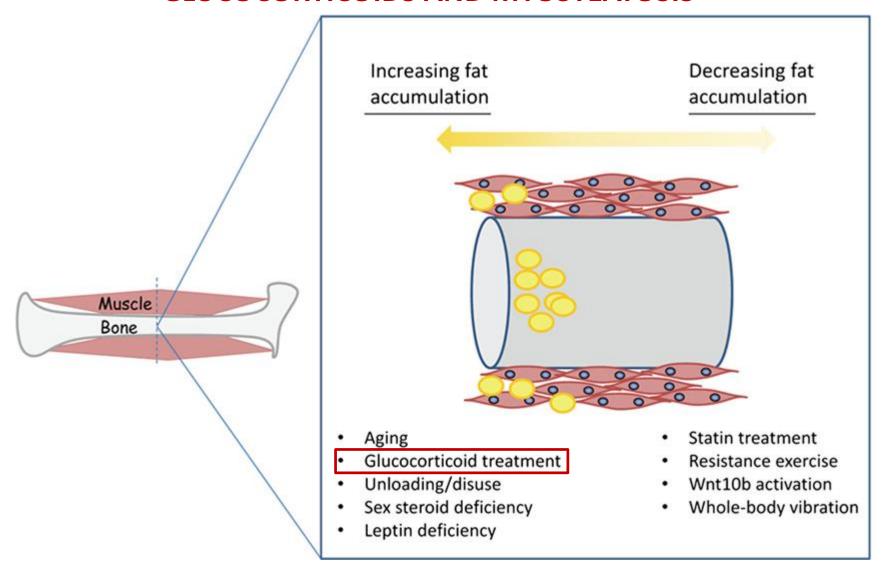
- Abiogen
- Italfarmaco
- Kyowa Kyrin


- Muscolo
- Osso

PATHOPHYSIOLOGY OF BONE DAMAGE IN CUSHING SYNDROME

Pivonello R et al, Lancet Diabetes Endocrinol 2016

CELL POPULATIONS IN MUSCLE AND THEIR RELATIONSHIP TO LIPID ACCUMULATION


Hamrick MW et a l, Front Endocrinol 2016,

Myofibers: pink are surrounded

SCs (blue): satellite cells

FAPS (green): fibro-adipogenic progenitors (multipotential cells of mesenchymal origin)

GLUCOCORTICOIDS AND MYOSTEATOSIS

Hamrick MW et a l, Front Endocrinol 2016,

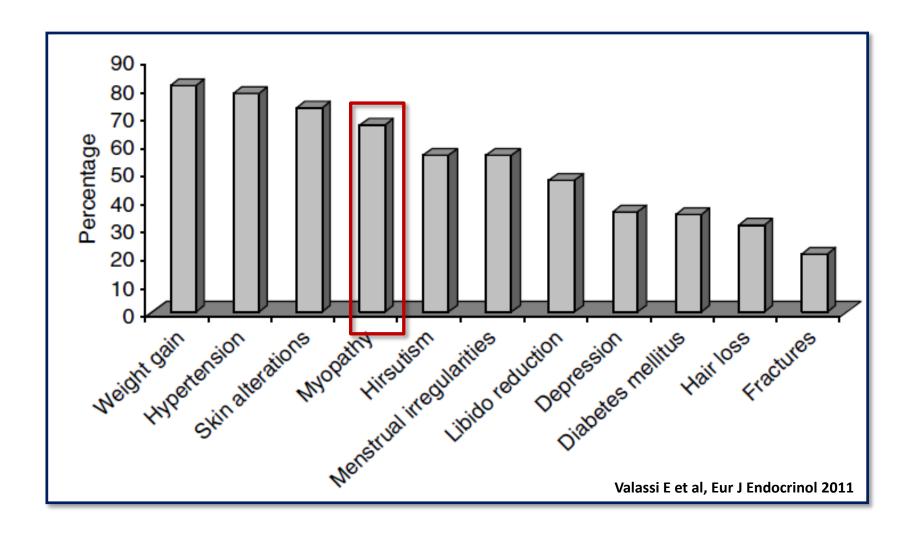
OPEN Glucocorticoid receptor positively regulates transcription of FNDC5 in the liver

Received: 10 October 2016

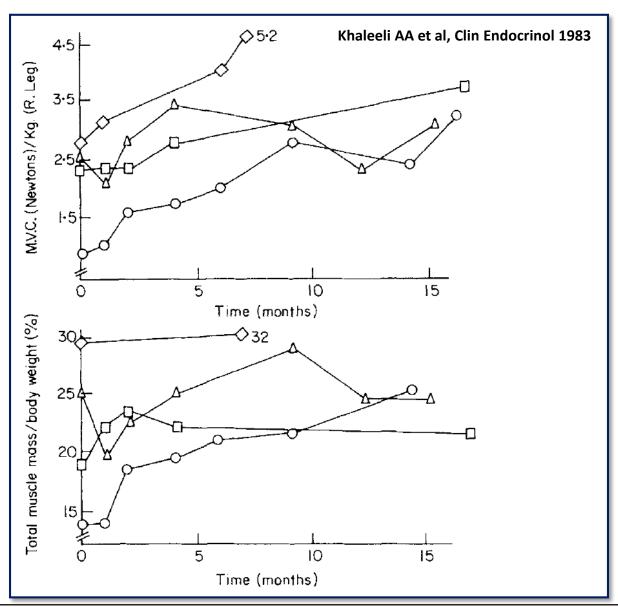
Accepted: 23 January 2017

Published: 27 February 2017

Hyoung Kyu Kim^{1,2,*}, Yu Jeong Jeong^{1,*}, In-Sung Song^{1,3}, Yeon Hee Noh¹, Kyo Won Seo¹, Min Kim¹ & Jin Han¹


Irisin is secreted by skeletal muscle during exercise and influences energy and metabolic homeostasis. This hormone is a cleaved and secreted fragment of fibronectin type III domain-containing 5 (FNDC5). Elucidation of the FNDC5 gene regulation mechanism is necessary to clarify the function of irisin as a potential therapeutic target in human metabolic diseases. Thus, we investigated the genetic and epigenetic mechanisms that regulate expression of the FNDC5 gene. FNDC5 mRNA was strong expressed in major energy-dependent human tissues, including heart, brain, liver, and skeletal muscle. Promoter analysis of the FNDC5 gene revealed that the core promoter region of the FNDC5 gene contained one CpG island that was located just upstream of the transcriptional start site for variants 2 and 3. Treatment with the histone deacetylase inhibitor sodium butyrate and the demethylating agent 5-azacytidine increased mRNA expression of FNDC5 in Huh7 cells. Prediction of transcription factor binding sites suggested that the glucocorticoid receptor was involved in the regulation of FNDC5 expression, and indeed, cortisol treatment increased mRNA expression of FNDC5 in Huh7 cells. Collectively, these findings offer insight into the genetic and epigenetic regulation of FNDC5, providing the initial steps required for understanding the role of irisin in the metabolic homeostasis.

LEAN TISSUE MASS AND DISTRIBUTION IN CUSHING DISEASE


	Lean tissue							
	Total		Trunk		Legs		Arms	
	kg	% BW	kg	% BW ^b	kg	% BW ^b	kg	% BW ^b
Cushing Disease n=8	38.9 ± 5.3	51.5 ± 4.7	19.8 ± 3.3	50.6 ± 1.9	12.3 ± 1.3	31.7 ± 2.0	4.8 ± 0.91	12.3 ± 1.1
Obese Controls n=10	43.9 ± 4.6	53.9 ± 5.6	$\begin{array}{c} 21.5 \\ \pm \ 3.0 \end{array}$	48.8 ± 2.6	13.9 ± 1.2	31.8 ± 1.8	6.6 ± 1.1	15.0 ± 1.6
Healthy Controls n=8	36.5 ± 3.9	63.5 ± 4.3	17.1 ± 2.1	46.8 ± 1.9	12.4 ± 1.6	$\begin{array}{c} 34.1 \\ \pm \ 2.1 \end{array}$	4.4 ± 0.6	$\begin{array}{c} 12.0 \\ \pm \ 1.3 \end{array}$
P value a vs. b a vs. c b vs. c	0.047 NS 0.005	NS <0.001 0.003	NS NS 0.008	NS 0.003 NS	0.012 NS NS	NS NS 0.033	0.002 NS <0.001	0.001 NS 0.002

Wajchenberg BL et al, J Clin Endocrinol Metab 1995

MUSCLE DAMAGE IN CUSHING'S SYNDROME

EFFECT OF TREATMENT OF CUSHING'S SYNDROME ON SKELETAL MUSCLE STRUCTURE AND FUNCTION

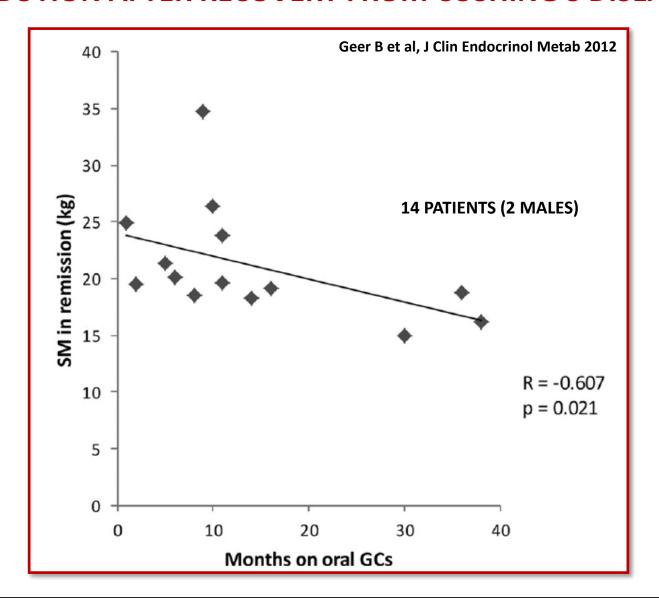
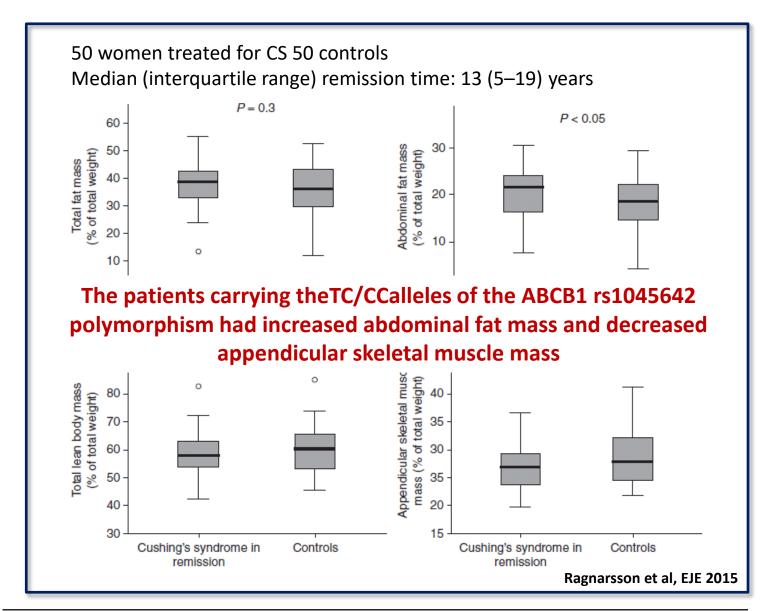
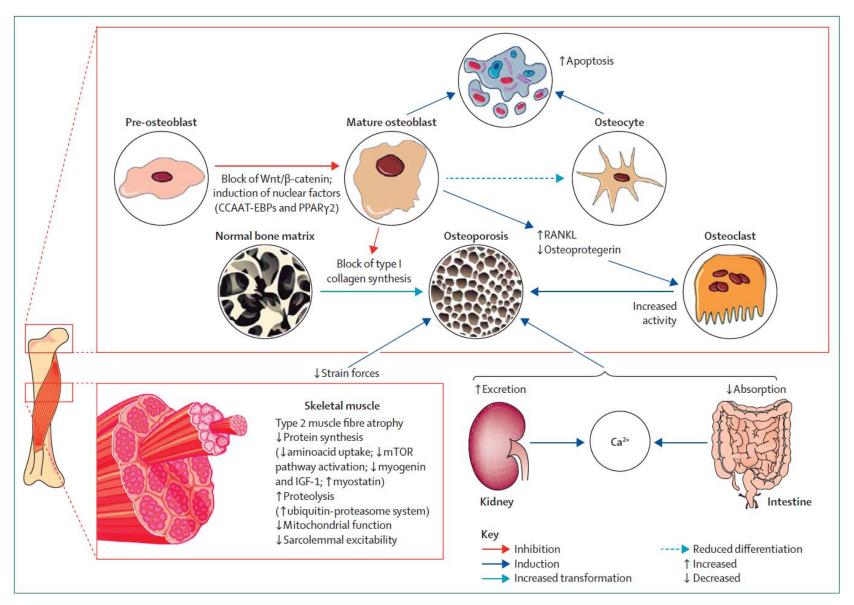

MRI ASSESSMENT OF LEAN AND ADIPOSE TISSUE DISTRIBUTION AFTER RECOVERY FROM CUSHING'S DISEASE

TABLE 2. Bod	14 PATIENTS (2 MALES)					
Measure (kg)	Active CD	Remission	Difference	Change (%)	Value decreased (no. of patients)	P value ^a
VAT	4.59 ± 2.68	3.21 ± 2.05	-1.38	-29.3	12	0.004
Pelvic BMAT ^b	0.26 ± 0.11	0.19 ± 0.09	-0.07	-20.5	11	0.012
TrSAT	19.54 ± 7.35	15.72 ± 7.92	-3.82	-21.9	12	0.0005
Limb SAT	13.82 ± 7.33	12.01 ± 7.29	-1.81	-14.8	13	0.001
Total SAT	33.36 ± 14.10	27.69 ± 14.33	-5.67	-19.1	13	0.0001
TAT	39.21 ± 14.15	32.00 ± 15.43	-7.21	-20.5	12	0.0002
IMAT	1.18 ± 0.46	1.10 ± 0.57	-0.08	-4.8	9	0.512
SM	21.18 (19.4–22.9)	19.58 (18.6–23.2)	-1.60	-4.5	10	0.02
Limb SM	11.04 (9.92–12.66)	10.86 (9.84-11.67)	-0.18	-2.9	10	0.12
VAT/SM	0.20 ± 0.09	0.14 ± 0.07	-0.06	-26.1	12	0.006
VAT/TAT	0.13 ± 0.09	0.11 ± 0.08	-0.02	-13.9	13	0.04


Data are presented as mean \pm sp or median (interquartile range). *P* values are from Ln (natural logarithm) values.

Geer B et al, J Clin Endocrinol Metab 2012

MRI ASSESSMENT OF LEAN AND ADIPOSE TISSUE DISTRIBUTION AFTER RECOVERY FROM CUSHING'S DISEASE


BODY COMPOSITION IN WOMEN WITH CUSHING'S SYNDROME IN REMISSION: ASSOCIATION WITH GLUCOCORTICOID SENSITIVITY

Muscolo

Osso

PATHOPHYSIOLOGY OF BONE DAMAGE IN CUSHING SYNDROME

Pivonello R et al, Lancet Diabetes Endocrinol 2016

BMD AFTER CURE OF CUSHING'S SYNDROME

2862 HERMUS ETAL.

JCE & M • 1995
Vol 80 • No 10

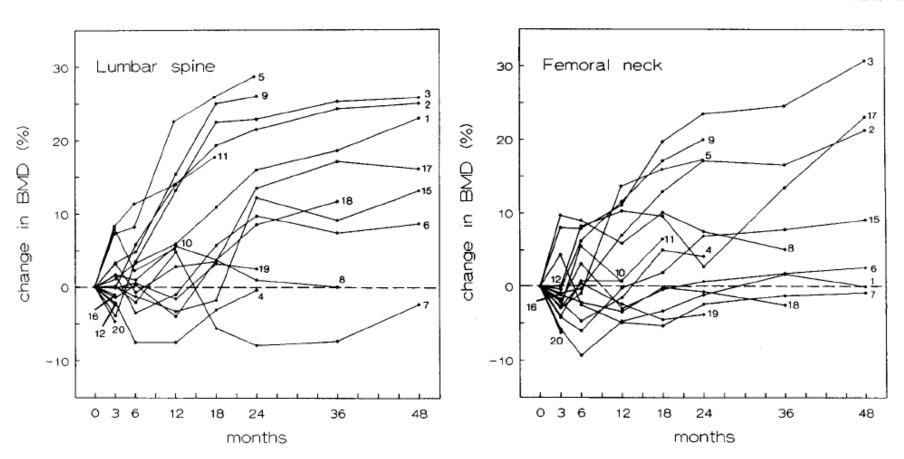
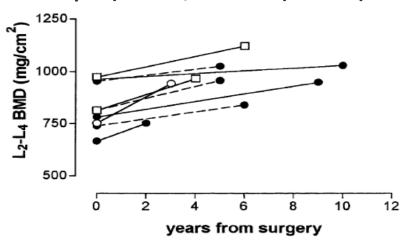
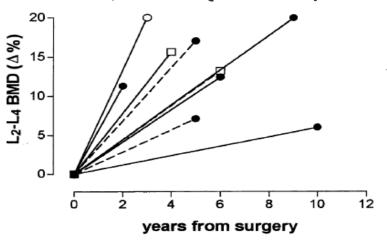
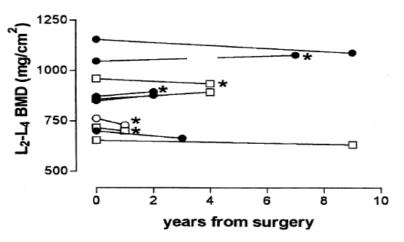
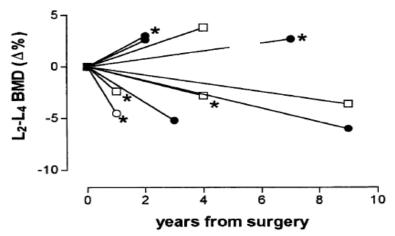
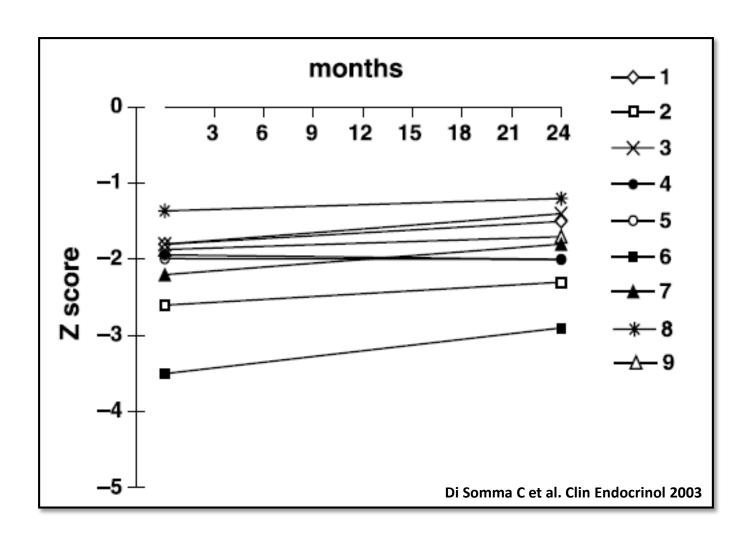




Fig. 1. Percentage change in BMD in the lumbar spine (L1-L4) and femoral neck after surgical cure of 18 patients with Cushing's syndrome. The individual values at seven time points after surgery were compared with the pretreatment value (t = 0 months; mean of two determinations). Note that the improvement of BMD in the lumbar spine in patients 7 and 8 is less than that in the other patients. Both patients used glucocorticoids in doses that were higher than the normal substitution dose, and patient 7 was treated for a malignant midline granuloma 9 months after bilateral adrenalectomy.

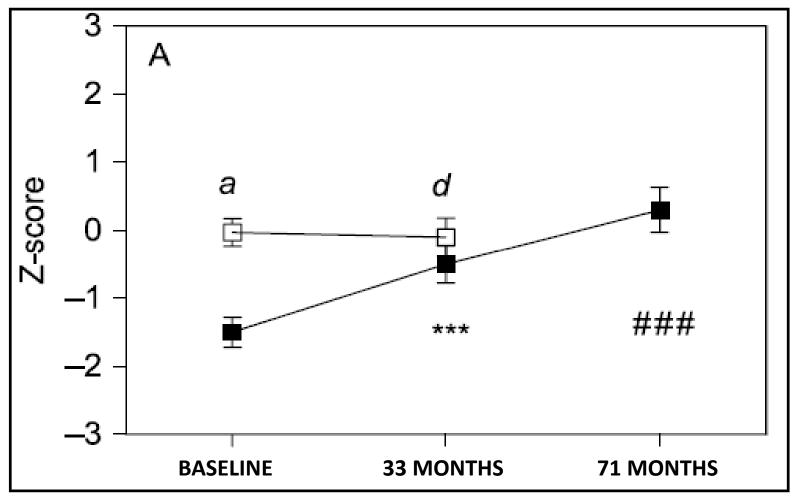

BMD IN CUSHING'S SYNDROME: MEDICAL TREATMENT


9 pts (1 male, 8 female) cured (6 adrenal adenomas, 3 Cushing's disease).

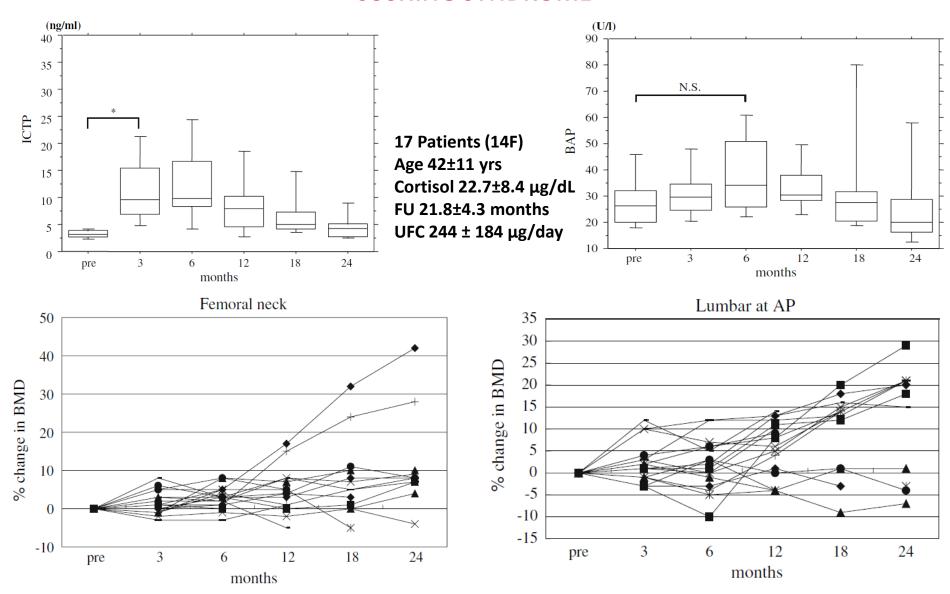
10 pts (1 male, 9 female) with active Cushing's disease, treated with ketoconazole



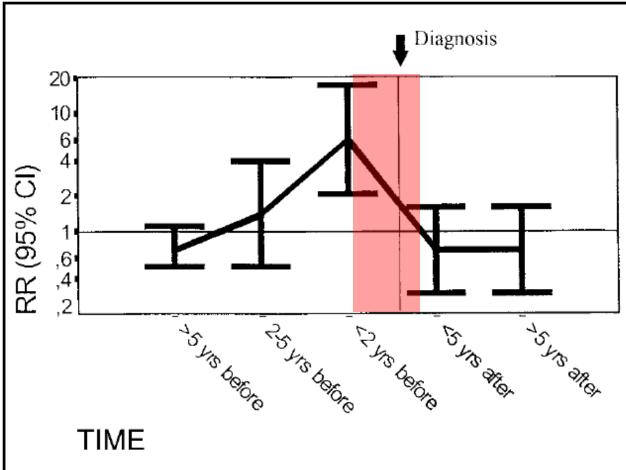
Luisetto G et al. Osteoporos Int 2001


BMD AFTER CURE OF CUSHING'S SYNDROME

9 adults with Cushing Disease (3 M, 6 F; age 32-50 years)


BMD AFTER CURE OF CUSHING'S SYNDROME

33 patients and 25 controls followed up for 33 (1FU) and 71 (2FU) months


Kristo C et al. Eur J Endocrinol 2006

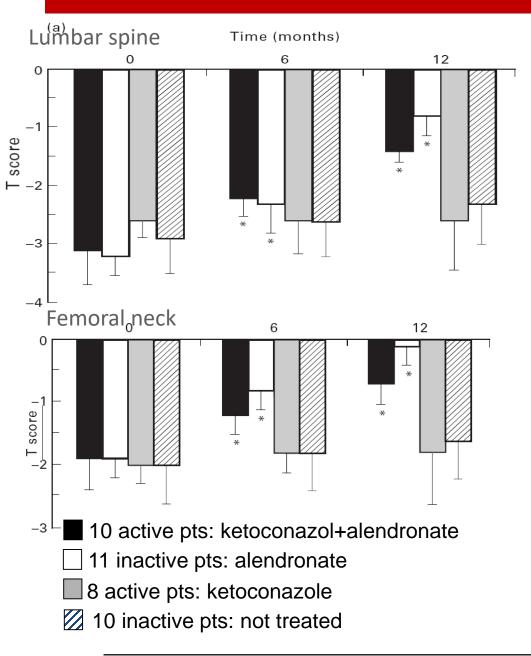
INCREASED BONE DENSITY AND TURNOVER AFTER CURE OF ADRENAL CUSHING SYNDROME

Kawamata A et al, World J Surg 2008

CUSHING'S SYNDROME AND FRACTURES

Figure 1 Fracture risk in patients compared with controls before and after the diagnosis (rate ratio (RR)) and 95% confidence interval (CI)). Note the log scale on the ordinate.

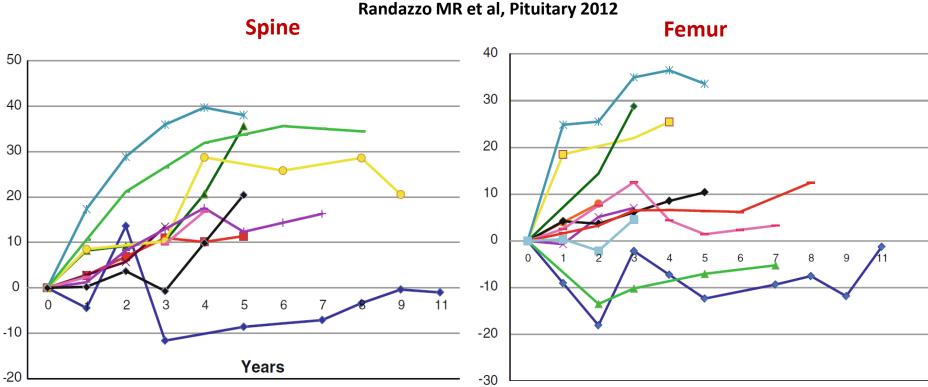
Vestergaard P et al, Eur J Endocrinol 2002


104 patients affected by Cushing Syndrome and 312 control subjects studied by a self administered questionnaire.

There was an increased fracture risk within the last 2 years prior to diagnosis (OR 6.0, 95%CI 2.1-17.2).

More than 2 years before and following diagnosis there were no increase in fracture risk.

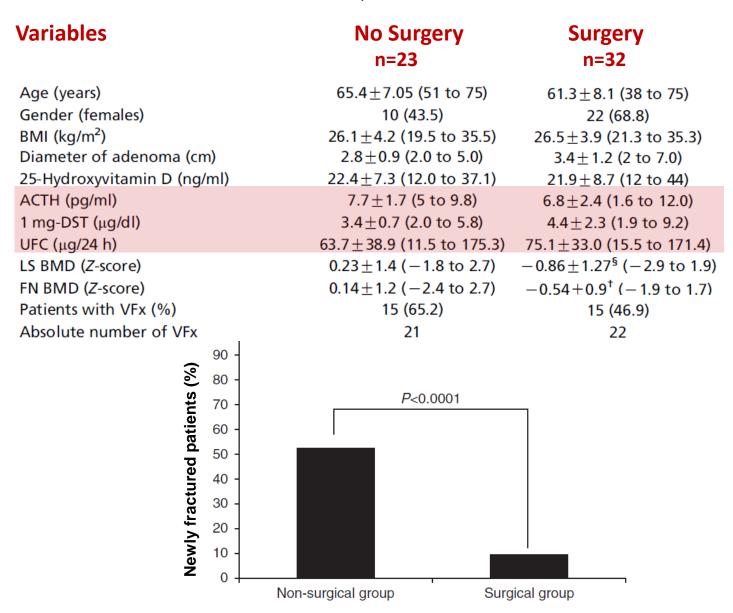
No difference in fracture risk between patients with adrenal or pituitary disease


ALENDRONATE IN THE OSTEOPOROSIS OF CUSHING'S DISEASE

Di Somma C et al. Clin Endocrinol 1998

"...The results of the present study show that a 12 month treatment period with alendronate induced an improvement in bone mineral density greater than in untreated patients..."

PERCENTAGE BMD VARIATION AFTER CURE OF ENDOGENOUS CUSHING SYNDROME


The BMD increase at spine tended to be higher in patients who were not treated with bisphosphonates than in the patients treated, (40% vs. 6% P = 0.0559).

The BMD increase at femur was not different.

Patients with untreated GHD showed a trend of lower improvement of BMD at spine T score than patients without GHD

ADRENALECTOMY REDUCES THE RISK OF FRACTURES IN SH

Salcuni AS et al, Eur J Endocrinol 2016

LACK OF SKELETAL RECOVERY AFTER CURE FROM CUSHING'S SYNDROME

- Hypovitaminosis D
- Hypogonadism
- GH deficit
- Glucocorticoids overtreatment

IN CUSHING'S SYNDROME THE MAIN PREDICTOR OF ABNORMAL BMD IS THE DURATION OF GC REPLACEMENT

Dependent variable	Predictors	В	p	Constant	R^2
BMC				1.82	0.57
	Duration of	-0.002	< 0.01		
	GC treatment				
	Age at	-0.010	< 0.05		
	CS diagnosis				
	BMI	0.017	< 0.05		
L-BMD	Duration of	-0.001	0.001	1.12	0.27
	GC treatment				
	of GC treatment is exporticoids; BMI, body n			ardized coeff	icient.

Barahona MJ et al, J Bone Mineral Res 2009

CONCLUSIONS

- Myopathy is highly prevalent in Cushing's syndrome (42-83%) and affects the proximal part of lower limbs and can take months to years to resolve.
- Scarce data on the effect of the recovery from Cushing Syndrome on muscle.
- Surgical remission improved BMD in most studies, more rapidly at spine, but the complete recovery may require more than 5 years.
- Ketoconazole treatment does not seem to ameliorate the bone consequences.
- The duration of glucocorticoid replacement is negatively correlated with BMD in women with Cushing's syndrome in long-term surgical remission.
- Hypovitaminosis D, GC over-treatment, hypogonadism, GH deficit might affect the time to bone recovery.

FONDAZIONE IRCCS CA' GRANDA OSPEDALE MAGGIORE POLICLINICO

- Cristina Eller Vainicher
- Serena Palmieri
- Valentina Morelli
- Elisa Cairoli

- Paolo Beck-Peccoz
- Anna Spada

Symptoms and signs	Prevalence (%
	90–100
Central obesity	
Rounded face ("moon face")	
Facial plethora	
Decreased libido	
	70–90
Purple striae	
Menstrual disturbances	
Hirsutism	
Erectile dysfunction	
Hypertension	
	50–70
Muscle weakness	
Posterior neck fat deposit ("buffalo hump")	
Body bruising	
Glucose intolerance/diabetes	
Osteopenia/osteoporosis	
Emotional lability/depression	
	20-50
Headache	
Backache	
Limb edema	
Recurrent infections	
Hypokaliemic alkalosis	
Nephrolithiasis	
	0–20

Pivonello R et al, Endocrinol Clin Metab North Am 2008