UNIVERSITA' DEDLI STUDI DI MA POLI FEDERICO II Oparilmento di Medicha Cinica e Chirurgia

> Altogether to Beat Cushing's Syndrome

S^a Edizione Viaggio alla *(ri)* scoperta della Sindrome di Cushing

Napoli, 10-12 Aprile 2017 Centro Congressi Federico II - Via Partenope, 36

Coordinatori Scientifici Annamaria Colao, Rosario Pivonello I farmaci ad azione surrenalica: METIRAPONE ed OSILODROSTAT

Maria Cristina De Martino

Dipartimento di Medicina Clinica e Chirurgia – Sezione di Endocrinologia, Università Federico II di Napoli, Italy

Treatment algorithm for current management of CD

Adrenal-directed therapy

Adrenal-directed drugs:

- Steroidogenesis inhibitors
 - Reduce cortisol levels through inhibition of adrenal steroid synthesis

- Can be used for both short- and long-term management
 - Between administration and effect of radiotherapy
 - To lower cortisol levels in patients if surgery is delayed

- Do not target the underlying corticotroph tumour
- Side effects

Goals of medical therapy

- Effective medical therapy would:
 - Normalize biochemical changes with minimal morbidity
 - Restore normal secretory dynamics to the HPA axis
 - Lower ACTH secretion
 - Reduce tumour volume
 - Reverse clinical features
 - Result in long-term control without recurrence

Goals of medical therapy

- Effective medical therapy would:
 - Normalize biochemical changes with minimal morbidity
 - Restore normal secretory dynamics to the HPA axis
 - Lower ACTH secretion
 - Reduce tumour volume
 - Reverse clinical features
 - Result in long-term control without recurrence

Site of action of adrenal-directed drugs

Site of action of adrenal-directed drugs

Metyrapone

Indicated in EU for the management of patients with ENDOGENOUS CUSHING'S SYNDROME

Results of the main studies evaluating the outcome of Metyrapone in CD

First author, Year	N° of patients	Drug dose (mg/d)	Follow-up (months)	Remission rate (%)	Escape (% of the total population)	Escape (% of the initially responsive population)
Jeffcoat , 1977	13 (9 RT)	R:500-4000;	R:2-66; M:18,2;m:11	100	0	0
Thoren, 1985	9 (8 RT, 1 BA)	R:1000-3000; M:1777,8 m:1500	R:0,6-6,5; M:1,9;m:1,2	77,8	NA	NA
Verhelst, 1991 (short- term study)	53	R:500-6000;	R:0,25-4;	75,4	na	na
Verhelst, 1991 (long- term study)	24 (24RT)	R:750-4000; m:750	R:3-140; m:27	83,3	4,2*	4,8*
Valassi, 2012	23 (CS)	R:750-1000; (initial dose)	R:1-30,7; m:4	56,5	13	18,7
Van den Bosch, 2014	22	R:1000-6000; M:2477,2; m:2000	R:1,7-11,6; M:5,9; m:5,8	45,4	NA	NA
Total	120	R:500-6000; M:2127,5;m:1750	R:0,25-66; M:8,7;m:5,5	R:45,4-100; M:71;m:75,5	R:0-13; M:5,7;m:4,2	R:0-18,7; M:7,8;m:4,8

RT:previous or concomitant radiotherapy; BA: bilateral adrenalectomy; R: range; M:mean:m:median; NA: not available; na: not applicable; *: for studies remission rate of the global population and escape rate of the long-term population have been considered for the calculation of total range, mean and median; **: results in overall population of patients with CS; £:results in the entire female population; \$:results in entire population of patients treated with ketokonazole and metyrapone either as monotherapy or in combination

Metyrapone: A recent study in CS

First author, Year	N° of patients	Drug dose (mg/d)	Follow-up (months)	Remission rate (%)	Escape (% of the total population)	Escape (% of the initially responsive population)
Daniel, E . 2016	164 as monotherapy	R:250-4000;	R:0.1-132; M:3;	43-76%	0	0

Overall more than 80% of patients showed an improvement in levels of circulating cortisol with over 50% achiving eucortisolemia when on monotherapy (assessed cortisol day-curve)

Metyrapone: pharmacokinetics aspects

Rapid absorption:

- Peak plasma concentration within 1-hours (extensive intra-individual variations)
- Maximum 11 beta-hydroxylase block reached at 2-4 hours after administration

Metabolism

Liver metabolism

Excretion:

- Half-life :~ 2 hours
- Excretion: bile and then urinary

Schöneshöfer et al., J Endocrinol Invest. 1980 Verhelst et al., Clin Endocrinol. 1991 Adlin et al., Endocrinology.1966

Metyrapone: dose and administration

Management

- Severity of hypercortisolism
- Dose response
- Patients tolerability
- Cortisol levels reached
- 4-6 daily doses
- Max dose: 6000 mg/day (24 tablets/day)

Daily dose		Cortisol monitoring and dose adjustments
Start	Mild disease: 750 mg/day (250-1000 mg/day) Severe disease: up to 1500 mg/day	After few days to maintain the levels of cortisol to the target values or to reach max tolerated dose. Adjustments every 1-4 weeks
Maintenance	1500-2000 mg/day	Every 1-2 months when cortisol is close to standard levels

Metyrapone: dose and administration

• Serum cortisol measurements:

- Average levels of 5-6 samples during the day
- UFC levels
- Use a reliable method, such as spectrometric (preferable) or specific RIA method, without cross reactivity with precursors. To avoid the risk of :
- Over-estimation of cortisol levels
- Over -treatment
- Failure to diagnose adrenal insufficiency

Two alternative schemes:

- Titration (or one block)
- Block-and-replace: dose increase + Corticosteroid replacement therapy if:
 - Quick dose increase need
 - Cyclic Cushing's disease patients

• Pediatric population:

- Limited data and no specific dose guidelines
- Elderly patients:
- Adults dose

• <u>Women:</u>

- Not recommended in reproductive age women not using contraception
- During pregnancy: monitor blood pressure and adequately treat hypertension
- Lactation: not recommended during treatment with Metyrapone

Metyrapone: adverse events

Common adverse events:

- Dizziness
- Sweating
- Headache
- Nausea, vomiting
- Hypertension, hypokalemia, aedema
- Hirsutism

Rare adverse events:

- Adrenal insufficiency
- Abdominal pain
- Atopic dermatitis

Osilodrostat

In phase III in CD

LINC 1 – proof-of-concept Study

 LINC 1, showed normal UFC in 11 of 12 patients with Cushing's disease after 10 weeks of LCI699

LINC 2 – Study Background and Key Eligibility Criteria

Follow-up cohort, n=4

(Off LCI699 for ≥ 8 months)

BID, twice daily; BL, baseline; UFC, urinary-free cortisol; ULN, upper limit of normal.

*Dose could be up-titrated within 1 week. Additional dose titrations were allowed up to week 10 and between weeks 10 and 22 as needed based on efficacy and tolerability. †Patients with baseline UFC $\leq 3 \times$ ULN started at 2 mg BID; those with baseline UFC $\geq 3 \times$ ULN started at 5 mg BID.

Study Sites

• Study sites in this international multicenter trial included

Absolute Changes in UFC From Baseline in Patients Who Completed 22 Weeks of LCI699

*discontinued during the first 10 weeks, 1 non-treatment-related administrative issue and 1 because AE; grade 3 papular rash; 1 might have experienced an "escape"

Mean Cortisol Levels Over Time After 22 Weeks of LCI699 Treatment

All data are mean±SE. Reference ranges: UFC, 11–138 nmol/24 hours; serum cortisol, 127–567 nmol/L. mUFC, mean UFC; SE, standard error; UFC, urinary-free cortisol.

Absolute Changes in ACTH From Baseline in Patients Who Completed 22 Weeks of LCI699

Reference range: ACTH, 1.1–11.1 pmol/L. ACTH, adrenocorticotropic hormone.

Changes in Other Hormone Levels of the HPA Axis During LCI699 Treatment

All data are mean±SD.

Reference ranges: 11-deoxycortisol, ≤3.92 nmol/L;11-deoxycorticosterone, 0.045–0.393 nmol/L.

HPA, hypothalamic-pituitary-adrenal; SD, standard deviation.

Changes in Testosterone Levels in Individual Patients

Testosterone was above normal in 9 of 12 women who completed 22 weeks of LCI699 treatment

Changes in Clinical and Laboratory Values at Week 22 of LCI699 Treatment

Parameter	Baseline $(n = 19)$	Week 22 (n = 17)	Absolute change from baseline	Percentage change from baseline
Weight, kg	85.1 ± 24.0	85.6 ± 26.2	-1.5 ± 3.8	-3.0 (-7, 6)
Body mass index, kg/m ²	30.7 ± 7.0	30.1 ± 7.9	-0.5 ± 1.4	-3.1 (-7, 7)
Systolic blood pressure, ^a mmHg	132.6 ± 11.6	131.9 ± 17.8	-1.0 ± 16.2	-0.5 (-20, 26)
Patients with baseline ^b hypertension $(n = 13)$	133.6 ± 13.1	133.5 ± 20.1	-0.8 ± 19.0	-4.9 (-20, 26)
Diastolic blood pressure, ^a mmHg	85.1 ± 6.5	86.0 ± 8.9	1.3 ± 9.7	2.4 (-15, 24)
Patients with baseline ^b hypertension $(n = 13)$	85.4 ± 7.5	86.8 ± 9.7	1.9 ± 11.2	2.4 (-15, 24)
Fasting plasma glucose, mg/dL	105.6 ± 49.0	81.2 ± 9.0	-14.9 ± 28.9	-10.2 (-58, 18)
Patients with baseline ^b diabetes mellitus ($n = 8$)	133.4 ± 67.2	82.7 ± 12.3	-33.3 ± 41.0	-21.4 (-58, -5)
HbA _{1c} , %	5.7 ± 0.7	5.5 ± 0.6	-0.2 ± 0.3	-2.2 (-11, 8)
Patients with baseline ^b diabetes mellitus $(n = 8)$	6.4 ± 0.5	6.0 ± 0.5	-0.3 ± 0.3	-5.5 (-11, 0)
Total cholesterol, mmol/L	5.3 ± 1.4	4.6 ± 0.8	-0.7 ± 1.4	-8.0 (-39, 70)
Patients with baseline ^b dyslipidemia ($n = 6$)	5.9 ± 1.8	5.2 ± 0.9	-0.7 ± 1.9	-12.6 (-39, 70)
HDL-cholesterol, mmol/L	1.7 ± 0.9	1.3 ± 0.4	-0.5 ± 0.8	-16.6 (-68, 11)
Patients with baseline ^b dyslipidemia $(n = 6)$	1.5 ± 0.5	1.3 ± 0.6	-0.2 ± 0.2	-13.7 (-34, 11)
LDL-cholesterol, mmol/L	3.3 ± 1.7	2.8 ± 0.6	-0.6 ± 1.6	-15.2 (-57, 350
Patients with baseline ^b dyslipidemia ($n = 6$)	3.6 ± 1.9	3.1 ± 0.7	-0.5 ± 1.7	-17.8 (-48, 350
Triglycerides, mmol/L	1.5 ± 0.6	1.3 ± 0.6	0 ± 0.4	-11.9 (-38, 65)
Patients with baseline ^b dyslipidemia ($n = 6$)	1.7 ± 0.7	1.7 ± 0.4	-0.1 ± 0.6	-7.8 (-29, 44)

Reported Adverse Events (Regardless of Relationship to Study Drug)

- AEs were reported in ≥5 patients in the combined cohorts
- Safety follow-up includes data of up to 50 weeks (median, 26.7 weeks)

	All patients (N=19)			
	All grades, n (%)	Grade 3/4, n (%)		
Increased adrenal precursors	7 (36.8)	0		
Increased ACTH	6 (31.6)	0		
Increased testosterone	5 (26.3)	1 (5.3)		
Nausea	6 (31.6)	0		
Diarrhea	6 (31.6)	0		
Asthenia	6 (31.6)	0		
Adrenal insufficiency	6 (31.6)	1 (5.3)		
Nasopharyngitis	5 (26.3)	0		

2 of 19 patients discontinued from the study: AEs (n=1*); administrative issue (n=1)

All AEs are as reported by the investigator.

*Patient discontinued at week 2: diarrhea, nausea, muscular weakness, malaise, and papule.

ACTH, adrenocorticotropic hormone; AE, adverse event.

Osilodrostat Versus Metyrapone

- Advantages of Osilodrostat include
 - Longer half-life, allowing twice-daily dosing
 - Higher potency against 11β-hydroxylase

	LCI699	Metyrapone
Administration	Oral	Oral
Half-life	~4 hours	<2 hours
IC ₅₀ against 11β-hydroxylase	2.5 nM	7.5 nM

- Advantages of Metyrapone
 - Indicated for <u>CS</u> in EU

Conclusions

Metyrapone and Osilodrostat:

- Are able to control CS/CD in 50-80% of patients
- Are generally well tolerated
 - Most AEs were expected based on the mechanism of action and were consistent with those previously observed
- Metyrapone is indicated in EU for the management of patients with endogenous CS
- Osilodrostat is currently under evaluation in a large population of CD patients confirmatory phase III study (LINC 3) AE, adverse event; LINC, LCI699 IN Cushing's; UFC, urinary-free cortisol.

AE, adverse event; LINC, LC1699 IN Cushing's; UFC, urinary-free cortisol. Bertagna X, et al. *J Clin Endocrinol Metab.* 2014;99:1375–1383.

MARCELLO ROSCIOLI

Thank you

Annamaria Colao, Rosario Pivonello Chiara Simeoli Monica De Leo Davide Iacuaniello

LINC 2 – Study Background and Key Eligibility Criteria

- LINC 2 is an amended extension in 2 adult cohorts:
 - LINC 1 patients: if UFC >ULN off LCI699 (follow-up cohort, n=4)
 - Additional Cushing's disease patients: UFC >1.5 × ULN (expansion cohort, n=15)
- UFC based on mean of at least two 24-hour urine samples
 - After washout of other medications for Cushing's disease
 - Measured using LC-MS/MS in a central laboratory

Overall goal: assess efficacy and safety/tolerability of LCI699 in Cushing's disease over a longer period

LC-MS/MS, liquid chromatography-tandem mass spectrometry; LINC, LCI699 IN Cushing's; UFC, urinary-free cortisol; ULN, upper limit of normal.

Bertagna X, et al. J Clin Endocrinol Metab. 2014;99:1375–1383.

Study Objectives

- Effect of 10 and 22 weeks of LCI699 treatment on 24-hour assessments of UFC and other hormones of the HPA axis
 - Response was classified as follows:
 - Controlled mean UFC ≤ULN
 - Partially controlled mean UFC >ULN but with reduction of ≥50% from baseline
 - Uncontrolled mean UFC >ULN and with reduction of <50% from baseline
- Safety/tolerability

Changes in Clinical and Laboratory Values at Week 22 of LCI699 Treatment

Deremeter, medien (ver ve)			Absolute change at
Weight ka	Baseline (N=19)	Week 22 (N=17)	week 22
	05 (02–145)	65 (60–146)	0
SBP, mm Hg	133 (116–156)	132 (108–174)	0
Patients with baseline HT (n=13)	135 (117–134)	134 (108–155)	-1
DBP, mm Hg	84 (69–102)	86 (72–103)	+2
Patients with baseline HT (n=13)	84 (69–102)	86 (72–103)	+3
Glucose, mg/dL (NR: 70–110)	97 (69–187)	81 (64–102)	-16
Patients with baseline DM (n=8)	118 (87–187)	83 (64–102)	-35
HbA _{1c} , % (NR: <6.4)	5.4 (4.6–7.0)	5.1 (4.5–6.4)	-0.3
Patients with baseline DM (n=8)	6.4 (5.7–6.9)	6.0 (5.1–6.0)	-0.4
Total cholesterol, mg/dL (NR: <199)	209 (153–325)	179 (140–237)	-30
HDL cholesterol, mg/dL (NR: 35–100)	70 (28–220)	50 (28–94)	-20
LDL cholesterol, mg/dL (NR: <129)	130 (37–330)	107 (72–157)	-22
Triglycerides, mg/dL (NR: <149)	138 (58–266)	118 (41–192)	-20

DBP, diastolic blood pressure; DM, diabetes mellitus; HbA_{1c}, glycated hemoglobin; HDL, high-density lipoprotein; HT, hypertension; LDL, low-density lipoprotein; NR, normal range; SBP, systolic blood pressure.